Advertisement

Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms

  • Monika Maronova
  • Maria KalynaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1398)

Abstract

The moss Physcomitrella patens possesses highly efficient homologous recombination allowing targeted gene manipulations and displays many features of the early land plants including high tolerance to abiotic stresses. It is therefore an invaluable model organism for studies of gene functions and comparative studies of evolution of stress responses in plants. Here, we describe a method for generating targeted gene knockout lines in P. patens using a polyethylene glycol-mediated transformation of protoplasts including basic in vitro growth, propagation, and maintenance techniques.

Key words

Homologous recombination Gene targeting Knockout Physcomitrella Plant Stress Evolution Protoplast 

Notes

Acknowledgements

We thank Dr. Cuming and Dr. Kamisugi for expert advice and training in Physcomitrella transformation, as well as for providing us with the “Gransden” strain of P. patens and advice on its handling and for the vectors used for preparing constructs. This work was supported by the Austrian Science Fund (FWF [P26333]) to M.K.

References

  1. 1.
    Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69. doi: 10.1126/science.1150646, 1150646 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149(4):1739–1750. doi: 10.1104/pp.108.131714 PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Frank W, Ratnadewi D, Reski R (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220(3):384–394. doi: 10.1007/s00425-004-1351-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Charron AJ, Quatrano RS (2009) Between a rock and a dry place: the water-stressed moss. Mol Plant 2(3):478–486. doi: 10.1093/mp/ssp018 CrossRefPubMedGoogle Scholar
  5. 5.
    Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45(2):237–249. doi: 10.1111/j.1365-313X.2005.02603.x CrossRefPubMedGoogle Scholar
  6. 6.
    Knight CD, Cove DJ, Cuming AC, Quatrano RS (2002) Moss gene technology. In: Gilmartin PM, Bowler C (eds) Molecular plant biology, vol 2. Oxford University Press, Oxford, pp 285–301Google Scholar
  7. 7.
    Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358. doi: 10.1146/annurev.genet.39.073003.110214 CrossRefPubMedGoogle Scholar
  8. 8.
    Quatrano RS, McDaniel SF, Khandelwal A, Perroud PF, Cove DJ (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10(2):182–189. doi: 10.1016/j.pbi.2007.01.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154(1):87–95. doi: 10.1007/bf00265581 CrossRefGoogle Scholar
  10. 10.
    Ashton NW, Grimsley NH, Cove DJ (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144(5):427–435. doi: 10.1007/BF00380118 CrossRefPubMedGoogle Scholar
  11. 11.
    Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226(3):418–424CrossRefPubMedGoogle Scholar
  12. 12.
    Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11(6):1195–1206CrossRefPubMedGoogle Scholar
  13. 13.
    Kamisugi Y, Cuming AC, Cove DJ (2005) Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 33(19):e173. doi: 10.1093/nar/gni172 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Max F. Perutz LaboratoriesMedical University of ViennaViennaAustria
  2. 2.Institute of Applied Genetics and Cell Biology (IAGZ)BOKU — University of Natural Resources and Life SciencesViennaAustria

Personalised recommendations