Skip to main content

Prolonged and Continuous Measurement of Kidney Oxygenation in Conscious Rats

  • Protocol
  • First Online:
Kidney Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1397))

Abstract

A relative deficiency in kidney oxygenation, i.e., renal hypoxia, may contribute to the initiation and progression of acute and chronic kidney disease. A critical barrier to investigate this is the lack of methods allowing measurement of the partial pressure of oxygen in kidney tissue for long periods in vivo. We have developed, validated, and tested a novel telemetric method that can do this. Here we provide details on the calibration, implantation, implementation for data recording, and reuse of this telemetry-based technology for measurement of medullary tissue oxygen tension in conscious, unrestrained rats. This technique provides an important additional tool for investigating the impact of renal hypoxia in biology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans RG, Gardiner BS, Smith DW, O’Connor PM (2008) Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 295(5):F1259–F1270

    Article  CAS  PubMed  Google Scholar 

  2. Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28(6):998–1006

    Article  CAS  PubMed  Google Scholar 

  3. Legrand M, Mik EG, Johannes T, Payen D, Ince C (2008) Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 14(7-8):502–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17(1):17–25

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka T, Kato H, Kojima I et al (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61(8):795–805

    Article  PubMed  Google Scholar 

  6. Evans RG, Ince C, Joles JA, Smith DW, May CN, O’Connor PM, Gardiner BS (2013) Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40(2):106–122

    Article  CAS  PubMed  Google Scholar 

  7. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40(2):123–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh P, Ricksten SE, Bragadottir G, Redfors B, Nordquist L (2013) Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 40(2):138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liss P, Cox EF, Eckerbom P, Francis ST (2013) Imaging of intrarenal haemodynamics and oxygen metabolism. Clin Exp Pharmacol Physiol 40(2):158–167

    Article  CAS  PubMed  Google Scholar 

  10. Nangaku M, Rosenberger C, Heyman SN, Eckardt KU (2013) Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 40(2):148–157

    Article  CAS  PubMed  Google Scholar 

  11. Manotham K, Tanaka T, Matsumoto M et al (2004) Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15(5):1277–1288

    Article  PubMed  Google Scholar 

  12. McCormick D, Hu AP, Nielsen P, Malpas S, Budgett D (2007) Powering implantable telemetry devices from localized magnetic fields. Conf Proc IEEE Eng Med Biol Soc 2007:2331–2335

    PubMed  Google Scholar 

  13. Budgett DM, Hu AP, Si P et al (2007) Novel technology for the provision of power to implantable physiological devices. J Appl Physiol 102(4):1658–1663

    Article  PubMed  Google Scholar 

  14. Koeners MP, Ow CP, Russell DM et al (2013) Telemetry-based oxygen sensor for continuous monitoring of kidney oxygenation in conscious rats. Am J Physiol Renal Physiol 304(12):F1471–F1480

    Article  CAS  PubMed  Google Scholar 

  15. Bolger FB, Bennett R, Lowry JP (2011) An in vitro characterisation comparing carbon paste and Pt microelectrodes for real-time detection of brain tissue oxygen. Analyst 136(19):4028–4035

    Article  CAS  PubMed  Google Scholar 

  16. Bolger FB, McHugh SB, Bennett R et al (2011) Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J Neurosci Methods 195(2):135–142

    Article  CAS  PubMed  Google Scholar 

  17. Lowry JP, Griffin K, McHugh SB, Lowe AS, Tricklebank M, Sibson NR (2010) Real-time electrochemical monitoring of brain tissue oxygen: a surrogate for functional magnetic resonance imaging in rodents. NeuroImage 52(2):549–555

    Article  PubMed  Google Scholar 

  18. Kealy J, Bennett R, Lowry JP (2013) Simultaneous recording of hippocampal oxygen and glucose in real time using constant potential amperometry in the freely-moving rat. J Neurosci Methods 215(1):110–120

    Article  CAS  PubMed  Google Scholar 

  19. Lowry JP, Fillenz M (1997) Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum. J Physiol 498(Pt 2):497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niendorf T, Pohlmann A, Arakelyan K et al (2015) How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 213(1):19–38

    Article  CAS  Google Scholar 

  21. Scully CG, Mitrou N, Braam B, Cupples WA, Chon KH (2013) Detecting physiological systems with laser speckle perfusion imaging of the renal cortex. Am J Physiol Regul Integr Comp Physiol 304(11):R929–R939

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T (2010) Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res 70(11):4490–4498

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberger C, Rosen S, Paliege A, Heyman SN (2009) Pimonidazole adduct immunohistochemistry in the rat kidney: detection of tissue hypoxia. Methods Mol Biol 466:161–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten P. Koeners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koeners, M.P., Ow, C.P.C., Russell, D.M., Evans, R.G., Malpas, S.C. (2016). Prolonged and Continuous Measurement of Kidney Oxygenation in Conscious Rats. In: Hewitson, T., Smith, E., Holt, S. (eds) Kidney Research. Methods in Molecular Biology, vol 1397. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3353-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3353-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3351-8

  • Online ISBN: 978-1-4939-3353-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics