Skip to main content

Use of Cationized Ferritin Nanoparticles to Measure Renal Glomerular Microstructure with MRI

  • Protocol
  • First Online:
Book cover Kidney Research

Abstract

Magnetic resonance imaging (MRI) is becoming important for whole-kidney assessment of glomerular morphology, both in vivo and ex vivo. MRI-based renal morphological measurements can be made in intact organs and allow direct measurements of every perfused glomerulus. Cationic ferritin (CF) is used as a superparamagnetic contrast agent for MRI. CF binds to the glomerular basement membrane after intravenous injection, allowing direct, whole-kidney measurements of glomerular number, volume, and volume distribution. Here we describe the production, testing, and use of CF as an MRI contrast agent for quantitative glomerular morphology in intact mouse, rat, and human kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett KM, Zhou H, Sumner JP, Dodd SJ, Bouraoud N, Doi K, Star RA, Koretsky AP (2008) MRI of the basement membrane using charged nanoparticles as contrast agents. Magn Reson Med 60:564–574

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beeman SC, Zhang M, Gubhaju L, Wu T, Bertram JF, Frakes DH, Cherry BR, Bennett KM (2011) Measuring glomerular number and size in perfused kidneys using MRI. Am J Physiol Renal Physiol 300:F1454–F1457

    Article  CAS  PubMed  Google Scholar 

  3. Beeman SC, Cullen-McEwen LA, Puelles VG, Zhang M, Wu T, Baldelomar EJ, Dowling J, Charlton JR, Forbes MS, Ng A, Wu Q-Z, Armitage A, Egan GF, Bertram JF, Bennett KM (2014) MRI-based glomerular morphology and pathology in whole human kidneys. Am J Physiol Renal Physiol 306:F1381–F1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bennett KM, Bertram JF, Beeman SC, Gretz N (2013) The emerging role of MRI in quantitative renal glomerular morphology. Am J Physiol Renal Physiol 304:F1252–F1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Charlton JR, Beeman JF, Bennett KM (2013) MRI-detectable nanoparticles: the potential role in the diagnosis of and therapy for chronic kidney disease. Adv Chronic Kidney Dis 20:479–487

    Article  PubMed  Google Scholar 

  6. Heilmann M, Neudecker S, Wolf I, Gubhaju L, Sticht C, Schock-Kusch D, Kruz W, Bertram JF, Schad LR, Gretz N (2012) Quantification of glomerular number and size distribution in normal rat kidneys using magnetic resonance imaging. Nephrol Dial Transplant 27:100–107

    Article  PubMed  Google Scholar 

  7. E. J. Baldelomar, J.R. Charlton, S.C. Beeman, L. Cullen-Mcewen, V.M. Pearl, J.F. Bertram, T. Wu, M. Zhang, K.M. Bennett. Phenotyping by magnetic resonance imaging nondestructively measures glomerular number and volume distribution in mice with and without nephron reduction. Kidney Int (In Press)

    Google Scholar 

  8. Clavijo-Jordan MV, Caplan MR, Bennett KM (2010) Simplified synthesis and relaxometry of magnetoferritin for magnetic resonance imaging. Magn Reson Med 64:1260–1266

    Article  Google Scholar 

  9. Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60:1073–1081

    Article  CAS  PubMed  Google Scholar 

  10. Clavijo Jordan MV, Beeman SC, Baldelomar EJ, Bennett KM (2014) Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI. Contrast Media Mol Imaging 9:323–332

    Article  CAS  PubMed  Google Scholar 

  11. Danon D, Goldstein L, Marikovsky Y, Skutelsky E (1972) Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res 38:500–510

    Article  CAS  PubMed  Google Scholar 

  12. Yardeni T, Eckhaus M, Morris HD, Huizing M, Hoogstraten-Miller S (2011) Retro-orbital injections in mice. Lab Anim (NY) 40:155–160

    Article  Google Scholar 

  13. M. Zhang, T. Wu*, and K.M. Bennett. Small blob identification in medical images using regional features from optimum scale. IEEE Trans Biomed Eng. 2015. 62(4): 1051-62

    Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the NIH Diabetic Complications Consortium, The American Heart Association, The US National Institutes of Health grant NIH DK-091722, and a grant from the Hartwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bennett, K.M. et al. (2016). Use of Cationized Ferritin Nanoparticles to Measure Renal Glomerular Microstructure with MRI. In: Hewitson, T., Smith, E., Holt, S. (eds) Kidney Research. Methods in Molecular Biology, vol 1397. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3353-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3353-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3351-8

  • Online ISBN: 978-1-4939-3353-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics