Skip to main content

Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter

  • Protocol
  • First Online:
Cancer Drug Resistance

Abstract

The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saraswathy M, Gong S (2013) Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 31:1397–1407

    Article  CAS  PubMed  Google Scholar 

  2. Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14:3–9

    Article  PubMed  Google Scholar 

  3. Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259

    Article  CAS  PubMed  Google Scholar 

  4. Goodman LS, Hardman JG, Limbird LE, Gilman AG (2001) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  5. Kimura Y, Morita SY, Matsuo M, Ueda K (2007) Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci 98:1303–1310

    Article  CAS  PubMed  Google Scholar 

  6. Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  CAS  PubMed  Google Scholar 

  7. Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236

    Article  CAS  PubMed  Google Scholar 

  8. Taguchi Y, Kino K, Morishima M, Komano T, Kane SE, Ueda K (1997) Alteration of substrate specificity by mutations at the His61 position in predicted transmembrane domain 1 of human MDR1/P-glycoprotein. Biochemistry 36:8883–8889

    Article  CAS  PubMed  Google Scholar 

  9. Molnar J, Kars MD, Gunduz U, Engi H, Schumacher U, Van Damme EJ, Peumans WJ, Makovitzky J, Gyemant N, Molnar P (2009) Interaction of tomato lectin with ABC transporter in cancer cells: glycosylation confers functional conformation of P-gp. Acta Histochem 111:329–333

    Article  PubMed  Google Scholar 

  10. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  11. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  PubMed  Google Scholar 

  12. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  PubMed  Google Scholar 

  13. Eckford PD, Sharom FJ (2008) Interaction of the P-glycoprotein multidrug efflux pump with cholesterol: effects on ATPase activity, drug binding and transport. Biochemistry 47:13686–13698

    Article  CAS  PubMed  Google Scholar 

  14. Shustik C, Dalton W, Gros P (1995) P-glycoprotein-mediated multidrug resistance in tumor cells: biochemistry, clinical relevance and modulation. Mol Aspects Med 16:1–78

    Article  CAS  PubMed  Google Scholar 

  15. Sharom FJ (2014) Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol 4:41

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang K, Wu J, Li X (2008) Recent advances in the research of P-glycoprotein inhibitors. Biosci Trends 2:137–146

    PubMed  Google Scholar 

  17. Ding PR, Tiwari AK, Ohnuma S, Lee JW, An X, Dai CL, Lu QS, Singh S, Yang DH, Talele TT, Ambudkar SV, Chen ZS (2011) The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One 6, e19329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmeira A, Sousa E, Vasconcelos MH, Pinto MM (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025

    Article  CAS  PubMed  Google Scholar 

  19. Eichhorn T, Efferth T (2012) P-glycoprotein and its inhibition in tumors by phytochemicals derived from Chinese herbs. J Ethnopharmacol 141:557–570

    Article  CAS  PubMed  Google Scholar 

  20. Zhu H, Liu Z, Tang L, Liu J, Zhou M, Xie F, Wang Z, Wang Y, Shen S, Hu L, Yu L (2012) Reversal of P-gp and MRP1-mediated multidrug resistance by H6, a gypenoside aglycon from Gynostemma pentaphyllum, in vincristine-resistant human oral cancer (KB/VCR) cells. Eur J Pharmacol 696:43–53

    Article  CAS  PubMed  Google Scholar 

  21. Munagala S, Sirasani G, Kokkonda P, Phadke M, Krynetskaia N, Lu P, Sharom FJ, Chaudhury S, Abdulhameed MD, Tawa G, Wallqvist A, Martinez R, Childers W, Abou-Gharbia M, Krynetskiy E, Andrade RB (2014) Synthesis and evaluation of Strychnos alkaloids as MDR reversal agents for cancer cell eradication. Bioorg Med Chem 22:1148–1155

    Article  CAS  PubMed  Google Scholar 

  22. Lewandowska U, Gorlach S, Owczarek K, Hrabec E, Szewczyk K (2014) Synergistic interactions between anticancer chemotherapeutics and phenolic compounds and anticancer synergy between polyphenols. Postepy Hig Med Dosw (Online) 68:528–540

    Article  Google Scholar 

  23. Martins C, Doran C, Silva IC, Miranda C, Rueff J, Rodrigues AS (2014) Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem Biol Interact 218:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Dandawate P, Padhye S, Ahmad A, Sarkar FH (2013) Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 3:165–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR (2014) Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 33(1):41–85

    Article  CAS  PubMed  Google Scholar 

  26. Indumathy S, Dass CR (2013) Finding chemo: the search for marine-based pharmaceutical drugs active against cancer. J Pharm Pharmacol 65:1280–1301

    Article  CAS  PubMed  Google Scholar 

  27. Khushnud T, Mousa SA (2013) Potential role of naturally derived polyphenols and their nanotechnology delivery in cancer. Mol Biotechnol 55:78–86

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal B, Prasad S, Sung B, Krishnan S, Guha S (2013) Prevention and treatment of colorectal cancer by natural agents from mother nature. Curr Colorectal Cancer Rep 9:37–56

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nabekura T (2010) Overcoming multidrug resistance in human cancer cells by natural compounds. Toxins 2:1207–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr, Brenner DE (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4:354–364

    Article  CAS  Google Scholar 

  31. Dorai T, Aggarwal BB (2004) Role of chemopreventive agents in cancer therapy. Cancer Lett 215:129–140

    Article  CAS  PubMed  Google Scholar 

  32. Martins A, Toth N, Vanyolos A, Beni Z, Zupko I, Molnar J, Bathori M, Hunyadi A (2012) Significant activity of ecdysteroids on the resistance to doxorubicin in mammalian cancer cells expressing the human ABCB1 transporter. J Med Chem 55:5034–5043

    Article  CAS  PubMed  Google Scholar 

  33. Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS (2014) Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta 1840:615–625

    Article  CAS  PubMed  Google Scholar 

  34. Gyemant N, Tanaka M, Antus S, Hohmann J, Csuka O, Mandoky L, Molnar J (2005) In vitro search for synergy between flavonoids and epirubicin on multidrug-resistant cancer cells. In Vivo 19:367–374

    CAS  PubMed  Google Scholar 

  35. Du G, Lin H, Yang Y, Zhang S, Wu X, Wang M, Ji L, Lu L, Yu L, Han G (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int Immunopharmacol 10:819–826

    Article  CAS  PubMed  Google Scholar 

  36. Krishan A, Fitz CM, Andritsch I (1997) Drug retention, efflux, and resistance in tumor cells. Cytometry 29:279–285

    Article  CAS  PubMed  Google Scholar 

  37. Spengler G, Ramalhete C, Martins M, Martins A, Serly J, Viveiros M, Molnar J, Duarte N, Mulhovo S, Ferreira MJ, Amaral L (2009) Evaluation of cucurbitane-type triterpenoids from Momordica balsamina on P-glycoprotein (ABCB1) by flow cytometry and real-time fluorometry. Anticancer Res 29:3989–3993

    CAS  PubMed  Google Scholar 

  38. Spengler G, Viveiros M, Martins M, Rodrigues L, Martins A, Molnar J, Couto I, Amaral L (2009) Demonstration of the activity of P-glycoprotein by a semi-automated fluorometric method. Anticancer Res 29:2173–2177

    CAS  PubMed  Google Scholar 

  39. Viveiros M, Martins A, Paixao L, Rodrigues L, Martins M, Couto I, Fahnrich E, Kern WV, Amaral L (2008) Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. Int J Antimicrob Agents 31:458–462

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro HM (2004) “Cellular astronomy” – a foreseeable future in cytometry. Cytometry A 60:115–124

    Article  PubMed  Google Scholar 

  41. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  42. Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC (1988) A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc Natl Acad Sci U S A 85:4486–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weaver JL, Szabo G Jr, Pine PS, Gottesman MM, Goldenberg S, Aszalos A (1993) The effect of ion channel blockers, immunosuppressive agents, and other drugs on the activity of the multi-drug transporter. Int J Cancer 54:456–461

    Article  CAS  PubMed  Google Scholar 

  44. Spengler G, Evaristo M, Handzlik J, Serly J, Molnar J, Viveiros M, Kiec-Kononowicz K, Amaral L (2010) Biological activity of hydantoin derivatives on P-glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Res 30:4867–4871

    CAS  PubMed  Google Scholar 

  45. Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262:2166–2170

    CAS  PubMed  Google Scholar 

  46. Koizumi S, Konishi M, Ichihara T, Wada H, Matsukawa H, Goi K, Mizutani S (1995) Flow cytometric functional analysis of multidrug resistance by Fluo-3: a comparison with rhodamine-123. Eur J Cancer 31A:1682–1688

    Article  CAS  PubMed  Google Scholar 

  47. Molnar J, Szabo D, Mandi Y, Mucsi I, Fischer J, Varga A, Konig S, Motohashi N (1998) Multidrug resistance reversal in mouse lymphoma cells by heterocyclic compounds. Anticancer Res 18:3033–3038

    CAS  PubMed  Google Scholar 

  48. Orlowski S, Mir LM, Belehradek J Jr, Garrigos M (1996) Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J 317(Pt 2):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spengler G, Takacs D, Horvath A, Riedl Z, Hajos G, Amaral L, Molnar J (2014) Multidrug resistance reversing activity of newly developed phenothiazines on P-glycoprotein (ABCB1)-related resistance of mouse T-lymphoma cells. Anticancer Res 34:1737–1741

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Viveiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Armada, A. et al. (2016). Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics