Skip to main content

A Simple Workflow for Large Scale Shotgun Glycoproteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1394))

Abstract

Targeting subproteomes is a good strategy to decrease the complexity of a sample, for example in body fluid biomarker studies. Glycoproteins are proteins with carbohydrates of varying size and structure attached to the polypeptide chain, and it has been shown that glycosylation plays essential roles in several vital cellular processes, making glycosylation a particularly interesting field of study. Here, we describe a method for the enrichment of glycosylated peptides from trypsin digested proteins in human cerebrospinal fluid. We also describe how to perform the data analysis on the mass spectrometry data for such samples, focusing on site-specific identification of glycosylation sites, using user friendly open source software.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gevaert K, Van Damme P, Ghesquiere B et al (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7:2698–2718

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  PubMed  Google Scholar 

  3. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163

    Article  CAS  PubMed  Google Scholar 

  4. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105:8256–8261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sola RJ, Rodriguez-Martinez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol Life Sci 64:2133–2152

    Article  CAS  PubMed  Google Scholar 

  6. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  7. Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102:285–303

    Article  CAS  PubMed  Google Scholar 

  8. Sato Y, Endo T (2010) Alteration of brain glycoproteins during aging. Geriatr Gerontol Int 10 Suppl 1:S32–S40

    Google Scholar 

  9. Ruggeri ZM, Mendolicchio GL (2007) Adhesion mechanisms in platelet function. Circ Res 100:1673–1685

    Article  CAS  PubMed  Google Scholar 

  10. Berger MS, Locher GW, Saurer S et al (1988) Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48:1238–1243

    CAS  PubMed  Google Scholar 

  11. Hudziak RM, Schlessinger J, Ullrich A (1987) Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci U S A 84:7159–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogelzang NJ, Lange PH, Goldman A et al (1982) Acute changes of alpha-fetoprotein and human chorionic gonadotropin during induction chemotherapy of germ cell tumors. Cancer Res 42:4855–4861

    CAS  PubMed  Google Scholar 

  13. Bosl GJ, Lange PH, Fraley EE et al (1981) Human chorionic gonadotropin and alphafetoprotein in the staging of nonseminomatous testicular cancer. Cancer 47:328–332

    Article  CAS  PubMed  Google Scholar 

  14. Thompson DK, Haddow JE (1979) Serial monitoring of serum alpha-fetoprotein and chorionic gonadotropin in males with germ cell tumors. Cancer 43:1820–1829

    Article  CAS  PubMed  Google Scholar 

  15. Catalona WJ, Richie JP, Ahmann FR et al (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151:1283–1290

    CAS  PubMed  Google Scholar 

  16. Canney PA, Moore M, Wilkinson PM et al (1984) Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker. Br J Cancer 50:765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Topol EJ, Byzova TV, Plow EF (1999) Platelet GPIIb-IIIa blockers. Lancet 353:227–231

    Article  CAS  PubMed  Google Scholar 

  18. Guldbrandsen A, Vethe H, Farag Y et al (2014) In-depth characterization of the cerebrospinal fluid proteome displayed through the CSF Proteome Resource (CSF-PR). Mol Cell Proteomics 13(11):3152–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian Y, Zhou Y, Elliott S et al (2007) Solid-phase extraction of N-linked glycopeptides. Nat Protoc 2:334–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berven FS, Ahmad R, Clauser KR et al (2010) Optimizing performance of glycopeptide capture for plasma proteomics. J Proteome Res 9:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez J, Takao T, Hori H et al (1992) A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: identification of the positions of carbohydrate-linked asparagine in recombinant alpha-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal Biochem 205:151–158

    Article  CAS  PubMed  Google Scholar 

  22. Vaudel M, Barsnes H, Berven FS et al (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11:996–999

    Article  CAS  PubMed  Google Scholar 

  23. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature biotechnology 33:22–24

    Google Scholar 

  24. Vizcaino JA, Deutsch EW, Wang R et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545

    Article  CAS  PubMed  Google Scholar 

  26. Vaudel M, Sickmann A, Martens L (2012) Current methods for global proteome identification. Expert Rev Proteomics 9:519–532

    Article  CAS  PubMed  Google Scholar 

  27. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chalkley RJ, Clauser KR (2012) Modification site localization scoring: strategies and performance. Mol Cell Proteomics 11:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vaudel M, Venne AS, Berven FS et al (2014) Shedding light on black boxes in protein identification. Proteomics 14:1001–1005

    Article  CAS  PubMed  Google Scholar 

  30. Kohlbacher O, Reinert K, Gropl C et al (2007) TOPP—the OpenMS proteomics pipeline. Bioinformatics 23:e191–e197

    Article  CAS  PubMed  Google Scholar 

  31. Bertsch A, Gropl C, Reinert K et al (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol Biol 696:353–367

    Article  CAS  PubMed  Google Scholar 

  32. Deutsch EW, Mendoza L, Shteynberg D et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  34. Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vaudel M, Burkhart JM, Sickmann A et al (2011) Peptide identification quality control. Proteomics 11:2105–2114

    Google Scholar 

  37. Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C.K. is supported by the Kristian Gerhard Jebsen Foundation. H.B. is supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Vaudel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guldbrandsen, A., Barsnes, H., Kroksveen, A.C., Berven, F.S., Vaudel, M. (2016). A Simple Workflow for Large Scale Shotgun Glycoproteomics. In: Reinders, J. (eds) Proteomics in Systems Biology. Methods in Molecular Biology, vol 1394. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3341-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3341-9_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3339-6

  • Online ISBN: 978-1-4939-3341-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics