Skip to main content

Assessing the Inhibitory Activity of Oligonucleotides on TLR7 Sensing

  • Protocol
  • First Online:
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1390))

Abstract

Aberrant sensing of self-nucleic acids by Toll-like receptor (TLR) 7, 8, or 9 is associated with several autoimmune disorders, including systemic lupus erythematosus (SLE), rheumatoid arthritis, psoriasis, or systemic sclerosis. In recent years, several classes of synthetic oligonucleotides have been shown to antagonize sensing of immunostimulatory nucleic acids by TLR7/8/9, indicating that these molecules could have therapeutic applications in such autoimmune diseases. Conversely, synthetic oligonucleotides used in therapeutic technologies such as antisense and microRNA inhibitors also have the potential to inhibit TLR7/8/9 sensing, rendering patients more susceptible to viral/bacterial infections. This chapter describes a protocol to define the inhibitory activity of synthetic oligonucleotides on TLR7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397. doi:10.1038/41131

    Article  CAS  PubMed  Google Scholar 

  2. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  3. Sarvestani ST, Williams BR, Gantier MP (2012) Human Toll-like receptor 8 can be cool too: implications for foreign RNA sensing. J Interferon Cytokine Res 32(8):350–361. doi:10.1089/jir.2012.0014

    Article  CAS  PubMed  Google Scholar 

  4. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168(9):4531–4537

    Article  CAS  PubMed  Google Scholar 

  5. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994. doi:10.1084/jem.20090480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103. doi:10.1038/nature08512

    Article  CAS  PubMed  Google Scholar 

  7. Bokar JA, Rottman FM (1998) Biosynthesis and functions of modified nucleosides in eukaryotic mRNA. In: Modification and editing of RNA. American Society of Microbiology, Washington, DC. doi:10.1128/9781555818296.ch10

  8. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175. doi:10.1016/j.immuni.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  9. Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2'-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 365(1):90–108. doi:10.1016/j.jmb.2006.09.034

    Article  CAS  PubMed  Google Scholar 

  10. Sioud M, Furset G, Cekaite L (2007) Suppression of immunostimulatory siRNA-driven innate immune activation by 2'-modified RNAs. Biochem Biophys Res Commun 361(1):122–126. doi:10.1016/j.bbrc.2007.06.177

    Article  CAS  PubMed  Google Scholar 

  11. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I (2007) 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15(9):1663–1669. doi:10.1038/sj.mt.6300240

    Article  CAS  PubMed  Google Scholar 

  12. Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, Sparwasser T, Wagner H, Bauer S (2010) Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215(7):559–569. doi:10.1016/j.imbio.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Sarvestani ST, Stunden HJ, Behlke MA, Forster SC, McCoy CE, Tate MD, Ferrand J, Lennox KA, Latz E, Williams BR, Gantier MP (2015) Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res 112(5):1177–1188. doi:10.1093/nar/gku1343

    Article  Google Scholar 

  14. Sarvestani ST, Tate MD, Moffat JM, Jacobi AM, Behlke MA, Miller AR, Beckham SA, McCoy CE, Chen W, Mintern JD, O’Keeffe M, John M, Williams BR, Gantier MP (2014) Inosine-mediated modulation of RNA sensing by Toll-like receptor 7 (TLR7) and TLR8. J Virol 88(2):799–810. doi:10.1128/JVI.01571-13

    Article  PubMed Central  PubMed  Google Scholar 

  15. Santegoets KC, van Bon L, van den Berg WB, Wenink MH, Radstake TR (2011) Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS Lett 585(23):3660–3666. doi:10.1016/j.febslet.2011.04.028

    Article  CAS  PubMed  Google Scholar 

  16. Voskuhl R (2011) Sex differences in autoimmune diseases. Biol Sex Differ 2(1):1. doi:10.1186/2042-6410-2-1

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, Wu YL, Yu CY, Tang Y, Chen JY, Yang W, Wong M, Kawasaki A, Tsuchiya N, Sumida T, Kawaguchi Y, Howe HS, Mok MY, Bang SY, Liu FL, Chang DM, Takasaki Y, Hashimoto H, Harley JB, Guthridge JM, Grossman JM, Cantor RM, Song YW, Bae SC, Chen S, Hahn BH, Lau YL, Tsao BP (2010) Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A 107(36):15838–15843. doi:10.1073/pnas.1001337107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Santiago-Raber ML, Kikuchi S, Borel P, Uematsu S, Akira S, Kotzin BL, Izui S (2008) Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 181(2):1556–1562

    Article  CAS  PubMed  Google Scholar 

  19. Hwang SH, Lee H, Yamamoto M, Jones LA, Dayalan J, Hopkins R, Zhou XJ, Yarovinsky F, Connolly JE, Curotto de Lafaille MA, Wakeland EK, Fairhurst AM (2012) B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J Immunol 189(12):5786–5796. doi:10.4049/jimmunol.1202195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gilliet M, Conrad C, Geiges M, Cozzio A, Thurlimann W, Burg G, Nestle FO, Dummer R (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140(12):1490–1495. doi:10.1001/archderm.140.12.1490

    Article  CAS  PubMed  Google Scholar 

  21. Yokogawa M, Takaishi M, Nakajima K, Kamijima R, Fujimoto C, Kataoka S, Terada Y, Sano S (2014) Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus. Arthritis Rheumatol 66(3):694–706. doi:10.1002/art.38298

    Article  CAS  PubMed  Google Scholar 

  22. van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–5845. doi:10.4049/jimmunol.0802999

    Article  PubMed  Google Scholar 

  23. Lee SJ, Silverman E, Bargman JM (2011) The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat Rev Nephrol 7(12):718–729. doi:10.1038/nrneph.2011.150

    Article  CAS  PubMed  Google Scholar 

  24. Kuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 186(8):4794–4804. doi:10.4049/jimmunol.1000702

    Article  CAS  PubMed  Google Scholar 

  25. Jiang W, Zhu FG, Bhagat L, Yu D, Tang JX, Kandimalla ER, La Monica N, Agrawal S (2013) A Toll-like receptor 7, 8, and 9 antagonist inhibits Th1 and Th17 responses and inflammasome activation in a model of IL-23-induced psoriasis. J Invest Dermatol 133(7):1777–1784. doi:10.1038/jid.2013.57

    Article  CAS  PubMed  Google Scholar 

  26. Zhu FG, Jiang W, Bhagat L, Wang D, Yu D, Tang JX, Kandimalla ER, La Monica N, Agrawal S (2013) A novel antagonist of Toll-like receptors 7, 8 and 9 suppresses lupus disease-associated parameters in NZBW/F1 mice. Autoimmunity 46(7):419–428. doi:10.3109/08916934.2013.798651

    Article  CAS  PubMed  Google Scholar 

  27. Sun S, Rao NL, Venable J, Thurmond R, Karlsson L (2007) TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets 6(4):223–235

    Article  CAS  PubMed  Google Scholar 

  28. Kandimalla ER, Bhagat L, Wang D, Yu D, Sullivan T, La Monica N, Agrawal S (2013) Design, synthesis and biological evaluation of novel antagonist compounds of Toll-like receptors 7, 8 and 9. Nucleic Acids Res 41(6):3947–3961. doi:10.1093/nar/gkt078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wang D, Bhagat L, Yu D, Zhu FG, Tang JX, Kandimalla ER, Agrawal S (2009) Oligodeoxyribonucleotide-based antagonists for Toll-like receptors 7 and 9. J Med Chem 52(2):551–558. doi:10.1021/jm8014316

    Article  CAS  PubMed  Google Scholar 

  30. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, Chang B, Duramad O, Coffman RL (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202(8):1131–1139. doi:10.1084/jem.20050914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gorden KK, Qiu X, Battiste JJ, Wightman PP, Vasilakos JP, Alkan SS (2006) Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 177(11):8164–8170

    Article  CAS  PubMed  Google Scholar 

  32. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2, e117. doi:10.1038/mtna.2013.46

    Article  PubMed Central  PubMed  Google Scholar 

  33. Gantier MP, Tong S, Behlke MA, Irving AT, Lappas M, Nilsson UW, Latz E, McMillan NA, Williams BR (2010) Rational design of immunostimulatory siRNAs. Mol Ther 18(4):785–795. doi:10.1038/mt.2010.4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Colak E, Leslie A, Zausmer K, Khatamzas E, Kubarenko AV, Pichulik T, Klimosch SN, Mayer A, Siggs O, Hector A, Fischer R, Klesser B, Rautanen A, Frank M, Hill AV, Manoury B, Beutler B, Hartl D, Simmons A, Weber AN (2014) RNA and imidazoquinolines are sensed by distinct TLR7/8 ectodomain sites resulting in functionally disparate signaling events. J Immunol 192(12):5963–5973. doi:10.4049/jimmunol.1303058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Frances Cribbin for her help with the redaction of this chapter and Soroush Sarvestani for performing the experiments shown in Fig. 1. The authors are supported by funding from the Australian NHMRC (1022144, 1062683 and 1081167 to MPG); the Australian Research Council (140100594 Future Fellowship to MPG); and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Gantier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ferrand, J., Gantier, M.P. (2016). Assessing the Inhibitory Activity of Oligonucleotides on TLR7 Sensing. In: McCoy, C. (eds) Toll-Like Receptors. Methods in Molecular Biology, vol 1390. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3335-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3335-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3333-4

  • Online ISBN: 978-1-4939-3335-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics