Skip to main content

Applications of Imaging Flow Cytometry for Microalgae

  • Protocol
  • First Online:
Book cover Imaging Flow Cytometry

Abstract

The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis® ImageStream®X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeling PJ (2013) The number, speed, and impact of plastid endosymbiosis in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. doi:10.1146/annurev-arplant-050312-120144

    Article  CAS  PubMed  Google Scholar 

  2. Dubelaar GBJ, Casotti R, Tarran GA, Biegala IC (2007) Phytoplankton and their analysis by flow cytometry. In: Doležel J, Greilhuber J, Sudam J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes, and genomes. Wiley-VCH Verlag, Weinheim, pp 287–322

    Chapter  Google Scholar 

  3. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343. doi:10.1038/334340a0

    Article  Google Scholar 

  4. Olsen RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot. Limnol Oceanogr Methods 5:195–203. doi:10.4319/lom.2007.5.195

    Article  Google Scholar 

  5. Sosik HM, Olsen RJ (2007) Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods 5:204–216. doi:10.4319/lom.2007.5.204

    Article  Google Scholar 

  6. Buskey EJ, Hyatt CJ (2006) Use of the FlowCAM for semi-automated recognition, and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae 5:685–692. doi:10.1016/j.hal.2006.02.003

    Article  Google Scholar 

  7. Alvarez E, Lopez-Urrutia A, Nogueira E, Fraga S (2011) How to effectively sample the plankton size spectrum? A case study using FlowCAM. J Plankton Res 23:1119–1133. doi:10.1093/plankt/fbr012

    Article  Google Scholar 

  8. Chang C-W, Miki T, Shiah F-K, Kao SJ, Wu J, Sastri AR, Hsieh CH (2014) Linking secondary structure of individual size distribution with nonlinear size-trophic level relationship in food webs. Ecology 95:897–909

    Article  PubMed  Google Scholar 

  9. Campbell L, Olson RJ, Sosik HM, Abraham A, Henrichs DW, Hyatt CJ, Buskey EJ (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the US is revealed by automated imaging flow cytometry. J Phycol 46:66–75. doi:10.1111/j.1529-8817.2009.00791.x

    Article  Google Scholar 

  10. Brosnahan ML, Farzan S, Keafer BA, Sosik HM, Olson RJ, Anderson DM (2014) Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes. Deep Sea Res Part 2 Top Stud Oceanogr 103:185–198. doi:10.1016/j.dsr2.2013.05.034

    Article  CAS  PubMed  Google Scholar 

  11. Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43:553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ko MSH, Nakauchi H, Takahashi N (1990) The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J 9:2835–2842

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846. doi:10.1038/nature04785

    Article  CAS  PubMed  Google Scholar 

  14. Meyer B, Wulf M, Hakansson H (2001) Phenotypic variation of life-cycle stages in clones of three similar Cyclotella species after induced auxospore production. Diatom Res 16:343–361. doi:10.1080/0269249X.2001.9705525

    Article  Google Scholar 

  15. Cooksey K, Guckert J, Williams S (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J Microbiol Method 6:333–345

    Article  CAS  Google Scholar 

  16. Chen W, Zhang C, Song L, Sommerfeld M (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47. doi:10.1016/j.mimet.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  17. Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511. doi:10.1016/j.biortech.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto M, Fujishita M, Hirata A, Kawano S (2004) Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J Plant Res 117:257–264

    Article  PubMed  Google Scholar 

  19. Traller JC, Hildebrand M (2013) Application of high throughput imaging to the diatom Cyclotella cryptica demonstrates substantial intrapopulation heterogeneity in the rate and extent of triacylglycerol accumulation. Algal Res 2:244–252. doi:10.1016/j.algal.2013.03.003

    Article  Google Scholar 

  20. Kopanska KS, Tesson B, Lin H, Meredith JC, Hildebrand M, Davis A (2014) Morphological features involved in adhesion of acid-cleaned diatom silica. Silicon 6:95–107. doi:10.1007/s12633-014-9178-2

    Article  CAS  Google Scholar 

  21. Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: Insight into their roles during cell wall formation. PLoS One 8, e61675. doi:10.1371/journal.pone.0061675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Blaaderen A, Vrij A, Blaaderen AV (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 81:2921–2931

    Article  Google Scholar 

  23. Desclés J, Vartanian M, El Harrak A, Quinet M, Bremond N, Sapriel G, Bibette J, Lopez PJ (2008) New tools for labeling silica in living diatoms. New Phytol 177:822–829. doi:10.1111/j.1469-8137.2007.02303.x

    Article  PubMed  Google Scholar 

  24. Gibbs SP (1979) The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci 35:253–266

    CAS  PubMed  Google Scholar 

  25. Shimizu K, Del Amo Y, Brzezinski MA, Stucky GD, Morse DE (2001) A novel fluorescent silica tracer for biological silicification studies. Chem Biol 8:1051–1060

    Article  CAS  PubMed  Google Scholar 

  26. Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC (2000) Nanoscale uniformity of pore architecture in diatomaceous silica: A combined small and wide angle X-ray scattering study. J Phycol 36:146–159

    Article  Google Scholar 

  27. Vrieling EG, Sun Q, Tian M, Kooyman PJ, Gieskes WW, van Santen RA, Sommerdijk NA (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci U S A 104:10441–10446. doi:10.1073/pnas.0608980104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulsen N, Kroger N (2005) A new molecular tool for transgenic diatoms—Control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272:3413–3423. doi:10.1111/j.1742-4658.2005.04760.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hildebrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hildebrand, M. et al. (2016). Applications of Imaging Flow Cytometry for Microalgae. In: Barteneva, N., Vorobjev, I. (eds) Imaging Flow Cytometry. Methods in Molecular Biology, vol 1389. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3302-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3302-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3300-6

  • Online ISBN: 978-1-4939-3302-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics