Skip to main content

A Transgenic Mouse Model of Poliomyelitis

  • Protocol
Poliovirus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1387))

Abstract

Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsiung GD, Black FL, Henderson JR (1964) Susceptibility of primates to viruses in relation to taxonomic classification. In: Buettner-Jaenusch J (ed) Evolutionary and genetic biology of primates, vol 2. Academic, New York, pp 1–23

    Chapter  Google Scholar 

  2. Ida-Hosonuma M, Sasaki Y, Toyoda H, Nomoto A, Gotoh O, Yonekawa H, Koike S (2003) Host range of poliovirus is restricted to simians because of a rapid sequence change of the poliovirus receptor gene during evolution. Arch Virol 148(1):29–44

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong C (1941) Cotton rats and white mice in poliomyelitis research. Am J Public Health Nations Health 31(3):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holland JJ (1961) Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology 15:312–326

    Article  CAS  PubMed  Google Scholar 

  5. Holland JJ, Mc LL, Syverton JT (1959) Mammalian cell-virus relationship. III Poliovirus production by non-primate cells exposed to poliovirus ribonucleic acid. Proc Soc Exp Biol Med 100(4):843–845

    Article  CAS  PubMed  Google Scholar 

  6. Holland JJ, Mc LL, Syverton JT (1959) The mammalian cell-virus relationship. IV Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J Exp Med 110(1):65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bergelson JM (2010) Receptors. In: Roos RP, Ehrenfeld E, Domingo E (eds) The picornaviruses. ASM Press, Washington, DC, pp 73–86

    Chapter  Google Scholar 

  8. Siddique T, McKinney R, Hung WY, Bartlett RJ, Bruns G, Mohandas TK, Ropers HH, Wilfert C, Roses AD (1988) The poliovirus sensitivity (PVS) gene is on chromosome 19q12 q13.2. Genomics 3(2):156–160

    Article  CAS  PubMed  Google Scholar 

  9. Mendelsohn C, Johnson B, Lionetti KA, Nobis P, Wimmer E, Racaniello VR (1986) Transformation of a human poliovirus receptor gene into mouse cells. Proc Natl Acad Sci U S A 83(20):7845–7849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56(5):855–865

    Article  CAS  PubMed  Google Scholar 

  11. Koike S, Horie H, Ise I, Okitsu A, Yoshida M, Iizuka N, Takeuchi K, Takegami T, Nomoto A (1990) The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J 9(10):3217–3224

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Koike S, Ise I, Nomoto A (1991) Functional domains of the poliovirus receptor. Proc Natl Acad Sci U S A 88(10):4104–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selinka HC, Zibert A, Wimmer E (1991) Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proc Natl Acad Sci U S A 88(9):3598–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ravens I, Seth S, Forster R, Bernhardt G (2003) Characterization and identification of Tage4 as the murine orthologue of human poliovirus receptor/CD155. Biochem Biophys Res Commun 312(4):1364–1371

    Article  CAS  PubMed  Google Scholar 

  15. Morrison ME, He YJ, Wien MW, Hogle JM, Racaniello VR (1994) Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J Virol 68(4):2578–2588

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aoki J, Koike S, Ise I, Sato-Yoshida Y, Nomoto A (1994) Amino acid residues on human poliovirus receptor involved in interaction with poliovirus. J Biol Chem 269(11):8431–8438

    CAS  PubMed  Google Scholar 

  17. Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990) Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63(2):353–362

    Article  CAS  PubMed  Google Scholar 

  18. Koike S, Taya C, Kurata T, Abe S, Ise I, Yonekawa H, Nomoto A (1991) Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci U S A 88(3):951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sabin A, Boulger L (1973) History of Sabin attenuated poliovirus oral live vaccine strains. J Biol Stand 1:115–118

    Article  Google Scholar 

  20. Nomoto A, Omata T, Toyoda H, Kuge S, Horie H, Kataoka Y, Genba Y, Nakano Y, Imura N (1982) Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc Natl Acad Sci U S A 79(19):5793–5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Omata T, Kohara M, Kuge S, Komatsu T, Abe S, Semler BL, Kameda A, Itoh H, Arita M, Wimmer E et al (1986) Genetic analysis of the attenuation phenotype of poliovirus type 1. J Virol 58(2):348–358

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawamura N, Kohara M, Abe S, Komatsu T, Tago K, Arita M, Nomoto A (1989) Determinants in the 5′ noncoding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. J Virol 63(3):1302–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Macadam AJ, Pollard SR, Ferguson G, Skuce R, Wood D, Almond JW, Minor PD (1993) Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192(1):18–26

    Article  CAS  PubMed  Google Scholar 

  24. Westrop GD, Wareham KA, Evans DM, Dunn G, Minor PD, Magrath DI, Taffs F, Marsden S, Skinner MA, Schild GC et al (1989) Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol 63(3):1338–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Haller AA, Stewart SR, Semler BL (1996) Attenuation stem-loop lesions in the 5′ noncoding region of poliovirus RNA: neuronal cell-specific translation defects. J Virol 70(3):1467–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Svitkin YV, Cammack N, Minor PD, Almond JW (1990) Translation deficiency of the Sabin type 3 poliovirus genome: association with an attenuating mutation C472 U. Virology 175(1):103–109

    Article  CAS  PubMed  Google Scholar 

  27. Horie H, Koike S, Kurata T, Sato-Yoshida Y, Ise I, Ota Y, Abe S, Hioki K, Kato H, Taya C et al (1994) Transgenic mice carrying the human poliovirus receptor: new animal models for study of poliovirus neurovirulence. J Virol 68(2):681–688

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Abe S, Ota Y, Doi Y, Nomoto A, Nomura T, Chumakov KM, Hashizume S (1995) Studies on neurovirulence in poliovirus-sensitive transgenic mice and cynomolgus monkeys for the different temperature-sensitive viruses derived from the Sabin type 3 virus. Virology 210(1):160–166

    Article  CAS  PubMed  Google Scholar 

  29. Abe S, Ota Y, Koike S, Kurata T, Horie H, Nomura T, Hashizume S, Nomoto A (1995) Neurovirulence test for oral live poliovaccines using poliovirus-sensitive transgenic mice. Virology 206(2):1075–1083. doi:10.1006/viro.1995.1030

    Article  CAS  PubMed  Google Scholar 

  30. Dragunsky E, Nomura T, Karpinski K, Furesz J, Wood DJ, Pervikov Y, Abe S, Kurata T, Vanloocke O, Karganova G, Taffs R, Heath A, Ivshina A, Levenbook I (2003) Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine: validation by a WHO collaborative study. Bull World Health Organ 81(4):251–260

    PubMed  PubMed Central  Google Scholar 

  31. Koike S, Taya C, Aoki J, Matsuda Y, Ise I, Takeda H, Matsuzaki T, Amanuma H, Yonekawa H, Nomoto A (1994) Characterization of three different transgenic mouse lines that carry human poliovirus receptor gene—influence of the transgene expression on pathogenesis. Arch Virol 139(3-4):351–363

    Article  CAS  PubMed  Google Scholar 

  32. WHO (2012) Standard operating procedure neurovirulence test of types 1, 2 OR 3 live attenuated poliomyelitis vaccines (oral) in transgenic mice susceptible to poliovirus, Version 6. World Health Organization, Switzerland

    Google Scholar 

  33. Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, Garib Z, Andre J, Blackman E, Freeman CJ, Jorba J, Sutter R, Tambini G, Venczel L, Pedreira C, Laender F, Shimizu H, Yoneyama T, Miyamura T, van Der Avoort H, Oberste MS, Kilpatrick D, Cochi S, Pallansch M, de Quadros C (2002) Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296(5566):356–359. doi:10.1126/science.1068284

    Article  CAS  PubMed  Google Scholar 

  34. Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin F, Rakoto-Andrianarivelo M, Delpeyroux F (2009) Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 5(5):e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rakoto-Andrianarivelo M, Guillot S, Iber J, Balanant J, Blondel B, Riquet F, Martin J, Kew O, Randriamanalina B, Razafinimpiasa L, Rousset D, Delpeyroux F (2007) Co-circulation and evolution of polioviruses and species C enteroviruses in a district of Madagascar. PLoS Pathog 3(12):e191. doi:10.1371/journal.ppat.0030191

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shimizu H, Thorley B, Paladin FJ, Brussen KA, Stambos V, Yuen L, Utama A, Tano Y, Arita M, Yoshida H, Yoneyama T, Benegas A, Roesel S, Pallansch M, Kew O, Miyamura T (2004) Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001. J Virol 78(24):13512–13521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thorley B, Kelly H, Nishimura Y, Yoon YK, Brussen KA, Roberts J, Shimizu H (2009) Oral poliovirus vaccine type 3 from a patient with transverse myelitis is neurovirulent in a transgenic mouse model. J Clin Virol 44(4):268–271. doi:10.1016/j.jcv.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  38. Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, Yoneyama M, Fujita T, Taya C, Yonekawa H, Koike S (2005) The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79(7):4460–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abe Y, Fujii K, Nagata N, Takeuchi O, Akira S, Oshiumi H, Matsumoto M, Seya T, Koike S (2012) The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J Virol 86(1):185–194. doi:10.1128/JVI.05245-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oshiumi H, Okamoto M, Fujii K, Kawanishi T, Matsumoto M, Koike S, Seya T (2011) The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J Immunol 187(10):5320–5327. doi:10.4049/jimmunol.1101503

    Article  CAS  PubMed  Google Scholar 

  41. Kärber G (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Pathol Pharmakol 162(4):480–483. doi:10.1007/BF01863914

    Article  Google Scholar 

  42. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27(3):493–497

    Google Scholar 

  43. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264(5167):1918–1921

    Article  CAS  PubMed  Google Scholar 

  44. Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA (1998) The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51(7):506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Koike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koike, S., Nagata, N. (2016). A Transgenic Mouse Model of Poliomyelitis. In: Martín, J. (eds) Poliovirus. Methods in Molecular Biology, vol 1387. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3292-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3292-4_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3291-7

  • Online ISBN: 978-1-4939-3292-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics