Skip to main content

Transient Protein Expression by Agroinfiltration in Lettuce

  • Protocol
Recombinant Proteins from Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1385))

Abstract

Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed “deconstructed” viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen Q (2011) Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants. In: Mou B, Scorza R (eds) Transgenic horticultural crops: challenges and opportunities, vol. 1, 1st edn. CRC, Boca Raton, pp 83–113

    Chapter  Google Scholar 

  2. Chen Q (2008) Expression and purification of pharmaceutical proteins in plants. Biol Eng 1:291–321

    Article  CAS  Google Scholar 

  3. Chen Q (2011) Turning a new leaf. Eur Biopharm Rev 2:64–68

    Google Scholar 

  4. Lai H, Chen Q (2012) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. Plant Cell Rep 31:573–584

    Article  CAS  PubMed  Google Scholar 

  5. Tuse D, Tu T, McDonald K (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. BioMed Res Int 2014:10

    Article  Google Scholar 

  6. Chen Q, Zhang C, Santi L (2014) Plant-made biologics. BioMed Res Int 2014:3

    Google Scholar 

  7. Faye L, Gomord V (2010) Success stories in molecular farming—a brief overview. Plant Biotechnol J 8:525–528

    Article  PubMed  Google Scholar 

  8. Chen Q, Mason HS, Mor T et al (2009) Subunit vaccines produced using plant biotechnology. In: Levine MM (ed) New generation vaccines. Informa Healthcare, USA, pp 306–14

    Chapter  Google Scholar 

  9. Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8:845–861

    Article  PubMed  Google Scholar 

  10. Lelivelt CC, McCabe M, Newell C et al (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  CAS  PubMed  Google Scholar 

  11. Komarova TV, Baschieri S, Donini M et al (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    Article  CAS  PubMed  Google Scholar 

  12. Leuzinger K, Dent M, Hurtado J et al (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp. doi:10.3791/50521

    PubMed  PubMed Central  Google Scholar 

  13. Chen Q, Lai H, Hurtado J et al (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:2

    Google Scholar 

  14. Joh LD, Wroblewski T, Ewing NN et al (2005) High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng 91:861–871

    Article  CAS  PubMed  Google Scholar 

  15. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  PubMed  Google Scholar 

  16. Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7:182–188

    Article  CAS  PubMed  Google Scholar 

  17. Santi L, Batchelor L, Huang Z et al (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buswell S, Medina-Bolivar F, Chen Q et al (2005) Expression of porcine prorelaxin in transgenic tobacco. Ann N Y Acad Sci 1041:77–81

    Article  CAS  PubMed  Google Scholar 

  19. Marillonnet S, Thoeringer C, Kandzia R et al (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  CAS  PubMed  Google Scholar 

  20. Chen Q, He J, Phoolcharoen W et al (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang Z, Phoolcharoen W, Lai H et al (2010) High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnol Bioeng 106:9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang Z, Chen Q, Hjelm B et al (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai H, He J, Engle M et al (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10:95–104

    Article  CAS  PubMed  Google Scholar 

  24. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  25. He J, Lai H, Brock C et al (2012) A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile Virus in plants. J Biomed Biotechnol 2012:10

    Article  Google Scholar 

  26. Sohi HH, Jourabchi E, Khodabandeh M (2005) Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration Iranian. J Biotechnol 3:109–113

    CAS  Google Scholar 

  27. Negrouk V, Eisner G, Lee H-I et al (2005) Highly efficient transient expression of functional recombinant antibodies in lettuce. Plant Sci 169:433–438

    Article  CAS  Google Scholar 

  28. Kapusta J, Modelska A, Figlerowicz M et al (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

    CAS  PubMed  Google Scholar 

  29. Rosales-Mendoza S, Soria-Guerra R, Moreno-Fierros L et al (2010) Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague. Planta 232:409–416

    Article  CAS  PubMed  Google Scholar 

  30. Webster DE, Smith SD, Pickering RJ et al (2006) Measles virus hemagglutinin protein expressed in transgenic lettuce induces neutralising antibodies in mice following mucosal vaccination. Vaccine 24:3538–3544

    Article  CAS  PubMed  Google Scholar 

  31. Pniewski T, Kapusta J, Bociąg P et al (2011) Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 52:125–136

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Chen M, Liu X-W et al (2007) Transient expression of an active human interferon-beta in lettuce. Sci Hortic 112:258–265

    Article  CAS  Google Scholar 

  33. Li S, De-gang Z, Yong-jun W et al (2008) Transient expression of chicken alpha interferon gene in lettuce. J Zhejiang Univ Sci B 9:351–355

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen Q (2013) Virus-like particle vaccines for norovirus gastroenteritis. In: Giese M (ed) Molecular vaccines, vol 1. Springer, Vienna, pp 153–81. doi:10.1007/978-3-7091-1419-3_8

    Chapter  Google Scholar 

  35. Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vacc Immunother 9:26–49

    Article  CAS  Google Scholar 

  36. Lai H, Engle M, Fuchs A et al (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 107:2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He J, Peng L, Lai H et al (2014) A Plant-Produced Antigen Elicits Potent Immune Responses against West Nile Virus in Mice. BioMed Res Int 2014:10

    Google Scholar 

  38. Phoolcharoen W, Bhoo SH, Lai H et al (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 9:807–816

    Article  CAS  PubMed  Google Scholar 

  39. He J, Lai H, Engle M et al (2014) Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile Virus. PLoS One 9:e93541. doi:10.1371/journal.pone.0093541

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lai H, He J, Hurtado J et al (2014) Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnol J 12(8):1098–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Phoolcharoen W, Dye JM, Kilbourne J et al (2011) A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc Natl Acad Sci U S A 108:20695–20700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. D. Green at Arizona State University for his continuous support for undergraduate research. This research was funded in part by the grant from the Bill & Melinda Gates Foundation OPP1043526 to Q. Chen. This research was also supported in part by funds from the School of Life Sciences Undergraduate Research (SOLUR) program at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Huafang Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chen, Q. et al. (2016). Transient Protein Expression by Agroinfiltration in Lettuce. In: MacDonald, J., Kolotilin, I., Menassa, R. (eds) Recombinant Proteins from Plants. Methods in Molecular Biology, vol 1385. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3289-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3289-4_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3288-7

  • Online ISBN: 978-1-4939-3289-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics