Multigene Engineering in Rice Using High-Capacity Agrobacterium tumefaciens BIBAC Vectors

  • Ruifeng HeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1385)


The high-capacity binary bacterial artificial chromosome (BIBAC) vector system permits the insertion of large fragments of DNA, up to 150 kb, into plants via Agrobacterium-mediated transformation. Here, we describe an optimized protocol for transformation of japonica rice (Oryza sativa L.) using this system. Calli derived from mature embryos are transformed using Agrobacterium strain LBA4404 that carries the BIBAC vector and the super-virulent helper plasmid pCH32. Transformed calli are then regenerated using optimized media and tested for transgene integration by PCR, GUS assay, and Southern blot analyses.


Binary bacterial artificial chromosome (BIBAC) Transformation of large DNA fragment Agrobacterium tumefaciens Rice (Oryza sativa L.) 



We thank the Plant Science Center of Cornell University for providing the BIBAC2 vector and pCH32 plasmid. This work was supported by the National Natural Science Foundation of China (No. 30470922), the Natural Science Foundation of Hubei Province (No. 2004ABA117), and the National Program of High Technology Development of China (No. 2004AA227120).


  1. 1.
    Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451CrossRefPubMedGoogle Scholar
  2. 2.
    Ercolano MR, Ballvora A, Paal J, Steinbiss HH, Salamini F, Gebhardt C (2004) Functional complementation analysis in potato via biolistic transformation with BAC large DNA fragments. Mol Breeding 13:15–22CrossRefGoogle Scholar
  3. 3.
    Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116CrossRefPubMedGoogle Scholar
  4. 4.
    Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosome. Proc Natl Acad Sci U S A 93:9975–9979CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132CrossRefPubMedGoogle Scholar
  6. 6.
    Hamilton CM, Frary A, Xu Y, Tanksley SD, Zhang HB (1999) Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector. Plant J 18:223–229CrossRefGoogle Scholar
  7. 7.
    He RF, Wang Y, Shi Z, Ren X, Zhu L, Weng Q, He GC (2003) Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Gene 321:113–121CrossRefPubMedGoogle Scholar
  8. 8.
    Wang W, Wu Y, Li Y, Xie J, Zhang Z, Deng Z, Zhang Y, Yang C, Lai J, Zhang H, Bao H, Tang S, Yang C, Gao P, Xia G, Guo H, Xie Q (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99CrossRefPubMedGoogle Scholar
  9. 9.
    Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357CrossRefPubMedGoogle Scholar
  10. 10.
    Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56CrossRefPubMedGoogle Scholar
  11. 11.
    Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457CrossRefPubMedGoogle Scholar
  12. 12.
    Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282CrossRefPubMedGoogle Scholar
  13. 13.
    He RF, Wang YY, Du B, Tang M, You AQ, Zhu LL, He GC (2006) Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. Acta Genet Sin 33:269–276CrossRefPubMedGoogle Scholar
  14. 14.
    McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosome. Theor Appl Genet 76:815–829CrossRefPubMedGoogle Scholar
  15. 15.
    He R, Pan J, Zhu L, He G (2010) Agrobacterium-mediated transformation of large DNA fragments using a BIBAC vector system in rice. Plant Mol Biol Rep 28:613–619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations