Antibody-Mediated Pathogen Resistance in Plants

  • Dieter PeschenEmail author
  • Stefan Schillberg
  • Rainer Fischer
Part of the Methods in Molecular Biology book series (MIMB, volume 1385)


The methods described in this chapter were developed in order to produce transgenic plants expressing pathogen-specific single-chain variable fragment (scFv) antibodies fused to antifungal peptides (AFPs), conferring resistance against fungal pathogens. We describe the selection from a phage display library of avian scFv antibodies that recognize cell surface proteins on fungi from the genus Fusarium, and the construction of scFv–AFP fusion protein constructs followed by their transient expression in tobacco (Nicotiana spp.) plants and stable expression in Arabidopsis thaliana plants. Using these techniques, the antibody fusion with the most promising in vitro activity can be used to generate transgenic plants that are resistant to pathogens such as Fusarium oxysporum f. sp. matthiolae.


Transgenic plants Antibody Antibody fragments Single-chain variable fragment scFv Pathogen Fungal antigens Antifungal peptide Arabidopsis thaliana Fusarium spp. 



We would like to thank all our colleagues at the Fraunhofer IME and the Institute of Biology VII, RWTH Aachen, for their cooperation and helpful discussions. Special thanks to Drs. Yu-Cai Liao and Simone Dorfmüller for their collaboration with the Fusarium work. We would like to thank Dr. Richard M. Twyman for help with the preparation of this manuscript.


  1. 1.
    Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240CrossRefPubMedGoogle Scholar
  2. 2.
    Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290CrossRefPubMedGoogle Scholar
  3. 3.
    Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23:275–282CrossRefPubMedGoogle Scholar
  4. 4.
    Salmeron JM, Vernooij B (1998) Transgenic approaches to microbial disease resistance in crop plants. Curr Opin Plant Biol 1:347–352CrossRefPubMedGoogle Scholar
  5. 5.
    Stuiver MH, Custers JHHV (2001) Engineering disease resistant plants. Nature 411:865–868CrossRefPubMedGoogle Scholar
  6. 6.
    Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275CrossRefPubMedGoogle Scholar
  7. 7.
    Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270CrossRefPubMedGoogle Scholar
  8. 8.
    Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33:323–343CrossRefPubMedGoogle Scholar
  10. 10.
    Nölke G, Fischer R, Schillberg S (2004) Antibody-based pathogen resistance in plants. J Plant Pathol 86:5–17Google Scholar
  11. 11.
    Safarnejad MR, Salehi-Jouzani GR, Tabatabaie M, Twyman RM, Schillberg S (2011) Antibody-mediated resistance against plant pathogens. Biotechnol Adv 29(6):961–971CrossRefPubMedGoogle Scholar
  12. 12.
    Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472CrossRefPubMedGoogle Scholar
  13. 13.
    Voss A, Niersbach M, Hain R, Hirsch HJ, Liao YC, Kreuzaler F et al (1995) Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol Breed 1:39–50CrossRefGoogle Scholar
  14. 14.
    Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22:856–862CrossRefPubMedGoogle Scholar
  15. 15.
    Prins M, Lohuis D, Schots A, Goldbach R (2005) Phage display-selected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. J Gen Virol 86:2107–2113CrossRefPubMedGoogle Scholar
  16. 16.
    Villani ME, Roggero P, Bitti O, Benvenuto E, Franconi R (2005) Immunomodulation of cucumber mosaic virus infection by intrabodies selected in vitro from a stable single-framework phage display library. Plant Mol Biol 58:305–316CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang MY, Zimmermann S, Fischer R, Schillberg S (2008) Generation and evaluation of movement-protein-specific single-chain antibodies for delaying symptoms of Tomato spotted wilt virus infection in tobacco. Plant Pathol 57:854–860CrossRefGoogle Scholar
  18. 18.
    Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prüfer D (2008) Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res 136:140–145CrossRefPubMedGoogle Scholar
  19. 19.
    Nölke G, Cobanov P, Uhde-Holzem K, Reustle G, Fischer R, Schillberg S (2009) Grapevine fanleaf (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Mol Plant Pathol 10:41–49CrossRefPubMedGoogle Scholar
  20. 20.
    Zakri AM, Ziegler A, Commandeur U, Fischer R, Torrance L (2012) In vivo expression and binding activity of scFv-RWAV, which recognizes the coat protein of Tomato leaf curl New Delhi virus (family Geminiviridae). Arch Virol 15:1291–1299CrossRefGoogle Scholar
  21. 21.
    Le Gall F, Bove JM, Garnier M (1998) Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Appl Environ Microbiol 64:4566–4572PubMedPubMedCentralGoogle Scholar
  22. 22.
    Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC (2004) Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 22:732–738CrossRefPubMedGoogle Scholar
  23. 23.
    Li HP, Zhang JB, Shi RP, Huang T, Fischer R, Liao YC (2008) Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant Microbe Interact 21:1242–1248CrossRefPubMedGoogle Scholar
  24. 24.
    Cheng W, Li HP, Zhang JB, Du HJ, Wei QY, Huang T, Yang P, Kong XW, Liao YC (2015) Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins. Plant Biotechnol J 13(5):664–674CrossRefPubMedGoogle Scholar
  25. 25.
    Strohl WR (2014) Antibody discovery: sourcing of monoclonal antibody variable domains. Curr Drug Discov Technol 11:3–19CrossRefPubMedGoogle Scholar
  26. 26.
    Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, Frendewey D, Valenzuela DM, Giallourakis CC, Alt FW, Yancopoulos GD, Murphy AJ (2013) Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci U S A 111:5147–5152CrossRefGoogle Scholar
  27. 27.
    Fridy PC, Li Y, Keegan S, Thompson MK, Nudelman I, Scheid JF, Oeffinger M, Nussenzweig MC, Fenyö D, Chait BT, Rout MP (2014) A robust pipeline for rapid production of versatile nanobody repertoires. Nat Methods 11:1253–1260CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thornton CR, Dewey FM, Gilligan CA (1997) Production and characterization of monoclonal antibody raised against surface antigens from mycelium Gaeumannomyces graminis var. tritici: evidence for an extracellular polyphenol oxidase. Am Phytopathol Soc 87:123–131CrossRefGoogle Scholar
  29. 29.
    Finlay WJ, Bloom L, Cunningham O (2011) Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 681:87–101CrossRefPubMedGoogle Scholar
  30. 30.
    Stoger E, Schillberg S, Twyman RM, Fischer R, Christou P (2004) Antibody production in transgenic plants. In: Lo BKC (ed) Antibody engineering: protocols and methods, 2nd edn, Methods in molecular biology. Humana Press Inc, Totowa, NJ, pp 301–318Google Scholar
  31. 31.
    Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108CrossRefGoogle Scholar
  32. 32.
    Desfeuz C, Steven JC, Bent AF (2000) Female reproductive are the primary target of Agrobacterium-mediated transformation by the Arabidopsis Floral-Dip Method. Plant Physiol 123:895–904CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dieter Peschen
    • 1
    Email author
  • Stefan Schillberg
    • 1
  • Rainer Fischer
    • 1
  1. 1.Fraunhofer Institute for Molecular Biology and Applied EcologyAachenGermany

Personalised recommendations