Plant Cell-Based Recombinant Antibody Manufacturing with a 200 L Orbitally Shaken Disposable Bioreactor

  • Nicole Raven
  • Stefan SchillbergEmail author
  • Stefan Rasche
Part of the Methods in Molecular Biology book series (MIMB, volume 1385)


Tobacco BY-2 cells are an attractive platform for the manufacture of a variety of biopharmaceutical proteins, including antibodies. Here, we describe the scaled-up cultivation of human IgG–secreting BY-2 cells in a 200 L orbitally shaken disposable bioreactor, resulting in cell growth and recombinant protein yields that are proportionately comparable with those obtained from cultivations in 500 mL shake flasks. Furthermore, we present an efficient downstream process for antibody recovery from the viscous spent culture medium using expanded bed adsorption (EBA) chromatography.


Antibody purification Expanded bed chromatography Nicotiana tabacum Bright Yellow 2 (BY-2) Plant cell suspension culture Scaled-up manufacture Single-use technology 



This work was supported by the European Union Seventh Framework Program under grant agreement no. 227420 (CoMoFarm).


  1. 1.
    Christou P (2013) From medicinal plants to medicines in plants: plant factories for the production of valuable pharmaceuticals. Curr Pharm Des 19:5469–5470CrossRefPubMedGoogle Scholar
  2. 2.
    Doran PM (2013) Therapeutically important proteins from in vitro plant tissue culture systems. Curr Med Chem 20:1047–1055PubMedGoogle Scholar
  3. 3.
    Fischer R, Schillberg S, Buyel JF et al (2013) Commercial aspects of pharmaceutical protein production in plants. Curr Pharm Des 19:5471–5477CrossRefPubMedGoogle Scholar
  4. 4.
    Twyman RM, Stoger E, Schillberg S et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578CrossRefPubMedGoogle Scholar
  5. 5.
    Basaran P, Rodríguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172CrossRefPubMedGoogle Scholar
  6. 6.
    Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502CrossRefPubMedGoogle Scholar
  7. 7.
    Häkkinen ST, Raven N, Henquet M et al (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 11:336–346CrossRefGoogle Scholar
  8. 8.
    Rival S, Wisniewski J-P, Langlais A et al (2008) Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Res 17:503–513CrossRefPubMedGoogle Scholar
  9. 9.
    Woodard SL, Wilken LR, Barros GOF et al (2009) Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development. Biotechnol Bioeng 104:562–571CrossRefPubMedGoogle Scholar
  10. 10.
    Hellwig S, Drossard J, Twyman RM et al (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422CrossRefPubMedGoogle Scholar
  11. 11.
    Walmsley AM, Doran PM (2012) Foreign protein production using plant cells: opportunities and challenges. Biotechnol Adv 30:385–386CrossRefPubMedGoogle Scholar
  12. 12.
    Nagata T, Nemoto Y (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30CrossRefGoogle Scholar
  13. 13.
    Schillberg S, Raven N, Fischer R et al (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542CrossRefPubMedGoogle Scholar
  14. 14.
    Fischer R, Schillberg S, Hellwig S et al (2012) GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol Adv 30:434–439CrossRefPubMedGoogle Scholar
  15. 15.
    Eibl R, Kaiser S, Lombriser R et al (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49CrossRefPubMedGoogle Scholar
  16. 16.
    Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, Netherlands, pp 203–227Google Scholar
  17. 17.
    Eibl R, Eibl D (2009) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598CrossRefGoogle Scholar
  18. 18.
    Georgiev MI, Eibl R, Zhong J-J (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang X, Stettler M, De Sanctis D et al (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53Google Scholar
  20. 20.
    Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617CrossRefPubMedGoogle Scholar
  21. 21.
    Kirchhoff J, Raven N, Boes A et al (2012) Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. Plant Biotechnol J 10:936–944CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nicole Raven
    • 1
  • Stefan Schillberg
    • 1
    Email author
  • Stefan Rasche
    • 1
  1. 1.Fraunhofer IMEAachenGermany

Personalised recommendations