Network-Assisted Disease Classification and Biomarker Discovery

  • Sonja Strunz
  • Olaf Wolkenhauer
  • Alberto de la Fuente
Part of the Methods in Molecular Biology book series (MIMB, volume 1386)


Developing improved approaches for diagnosis, treatment, and prevention of diseases is a major goal of biomedical research. Therefore, the discovery of biomarker signatures from high-throughput “omics” data is an active research topic in the field of bioinformatics and systems medicine. A major issue is the low reproducibility and the limited biological interpretability of candidate biomarker signatures identified from high-throughput data. This impedes the use of discovered biomarker signatures into clinical applications. Currently, much focus is placed on developing strategies to improve reproducibility and interpretability. Researchers have fruitfully started to incorporate prior knowledge derived from pathways and molecular networks into the process of biomarker identification. In this chapter, after giving a general introduction to the problem of disease classification and biomarker discovery, we will review two types of network-assisted approaches: (1) approaches inferring activity scores for specific pathways which are subsequently used for classification and (2) approaches identifying subnetworks or modules of molecular networks by differential network analysis which can serve as biomarker signatures.

Key words

Biomarker discovery Classification Feature selection Pathways Molecular networks 


  1. 1.
    Vasan RS (2006) Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation 113:2335–2362CrossRefPubMedGoogle Scholar
  2. 2.
    Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  3. 3.
    McDermott JE, Wang J, Mitchell H et al (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7:37–51PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Zahurak M, Parmigiani G, Yu W et al (2007) Pre-processing {A}gilent microarray data. BMC Bioinformatics 8:142PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. doi: 10.1038/ng1032 CrossRefPubMedGoogle Scholar
  6. 6.
    Smyth GK, Speed T (2003) Normalization of c{DNA} microarray data. Methods 31:265–273CrossRefPubMedGoogle Scholar
  7. 7.
    Jain AK (2010) Data clustering: 50 years beyond {K}-means. Pattern Recognit Lett 31:651–666CrossRefGoogle Scholar
  8. 8.
    Cui X, Churchill GA (2003) Statistical tests for differential expression in c{DNA} microarray experiments. Genome Biol 4:210PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dudoit S, Shaffer JP, Boldrick JC (2003) Multiple hypothesis testing in microarray experiments. Stat Sci 18:71–103CrossRefGoogle Scholar
  10. 10.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi: 10.1038/75556 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi: 10.1093/nar/gkr988 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517. doi: 10.1093/bioinformatics/btm344 CrossRefPubMedGoogle Scholar
  13. 13.
    John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. Proc Elev Int Conf Mach Learn 129:121–129Google Scholar
  14. 14.
    Kotsiantis SB, Zaharakis ID, Pintelas PE (2007) Supervised machine learning: a review of classification techniques. Front Artif Intell Appl 160:3Google Scholar
  15. 15.
    Larrañaga P, Calvo B, Santana R et al (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112CrossRefPubMedGoogle Scholar
  16. 16.
    Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87CrossRefGoogle Scholar
  17. 17.
    Lee JW, Lee JB, Park M, Song SH (2005) An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 48:869–885CrossRefGoogle Scholar
  18. 18.
    Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Adv Artif Intell (Lect Notes Comput Sci) 1015–1021Google Scholar
  19. 19.
    Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437. doi: 10.1016/j.ipm.2009.03.002 CrossRefGoogle Scholar
  20. 20.
    Kohavi R (1995) A study of cross-validation and bootstrap for estimation and model selection. In: Proceedings of the 14th international joint conference on Artificial intelligence. Kaufman, Montreal, pp 1137–1143Google Scholar
  21. 21.
    Fung G, Rao RB, Rosales R (2008) On the dangers of cross-validation. An experimental evaluation (SIAM). In: Apte C, Park H, Wang K, Zaki MJ (eds) Proceedings of the 2008 SIAM international conference on data mining. doi:10.1137/1.9781611972788.54, pp 588–596Google Scholar
  22. 22.
    Cun Y, Fröhlich H (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One 8:e73074. doi: 10.1371/journal.pone.0073074 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Boulesteix A-L, Slawski M (2009) Stability and aggregation of ranked gene lists. Brief Bioinform 10:556–568. doi: 10.1093/bib/bbp034 CrossRefPubMedGoogle Scholar
  24. 24.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492CrossRefPubMedGoogle Scholar
  25. 25.
    He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34:215–225. doi: 10.1016/j.compbiolchem.2010.07.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103:5923–5928. doi: 10.1073/pnas.0601231103 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kim S-Y (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147. doi: 10.1186/1471-2105-10-147 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Haury A-C, Jacob L, Vert J-P (2010) Increasing stability and interpretability of gene expression signatures. arXiv Prepr. arXiv1001.3109Google Scholar
  29. 29.
    Sanavia T, Aiolli F, Da San Martino G et al (2012) Improving biomarker list stability by integration of biological knowledge in the learning process. BMC Bioinformatics 13(Suppl 4):S22. doi: 10.1186/1471-2105-13-S4-S22 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Cun Y, Fröhlich H (2012) Biomarker gene signature discovery integrating network knowledge. Biology (Basel) 1:5–17. doi: 10.3390/biology1010005 Google Scholar
  31. 31.
    Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res. doi: 10.1093/nar/gkt1102 Google Scholar
  32. 32.
    Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740. doi: 10.1093/bioinformatics/btr260 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506. doi: 10.1093/nar/gkj126 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res. doi: 10.1093/nar/gkn653 Google Scholar
  35. 35.
    Soh D, Dong D, Guo Y, Wong L (2010) Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinformatics 11:449. doi: 10.1186/1471-2105-11-449 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Stobbe MD, Jansen GA, Moerland PD, van Kampen AHC (2014) Knowledge representation in metabolic pathway databases. Brief Bioinform 15:455–470. doi: 10.1093/bib/bbs060 CrossRefPubMedGoogle Scholar
  37. 37.
    Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290. doi: 10.1038/msb.2009.47 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases. Brief Bioinform 2:126–142. doi: 10.1093/bib/2.2.126 CrossRefPubMedGoogle Scholar
  39. 39.
    Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942. doi:10.1038/nbt.1666, Epub 2010 Sep 9Google Scholar
  40. 40.
    Walhout AJ, Vidal M (2001) High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24:297–306. doi: 10.1006/meth.2001.1190 CrossRefPubMedGoogle Scholar
  41. 41.
    Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574. doi: 10.1073/pnas.061034498 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. doi: 10.1038/nature04670 CrossRefPubMedGoogle Scholar
  43. 43.
    Gavin A-C, Bösche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147. doi: 10.1038/415141a CrossRefPubMedGoogle Scholar
  44. 44.
    Pieroni E, De La Fuente Van Bentem S, Mancosu G et al (2008) Protein networking: insights into global functional organization of proteomes. Proteomics 8:799–816. doi: 10.1002/pmic.200700767 CrossRefPubMedGoogle Scholar
  45. 45.
    Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics. doi: 10.1093/bioinformatics/bti1142 PubMedCentralGoogle Scholar
  46. 46.
    Chen H, Sharp BM (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147. doi: 10.1186/1471-2105-5-147 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Valencia A, Pazos F (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12:368–373. doi: 10.1016/S0959-440X(02)00333-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. doi: 10.1093/nar/gkq973 Google Scholar
  49. 49.
    Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res. doi: 10.1093/nar/gks1158 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Xenarios I, Fernandez E, Salwinski L et al (2001) DIP: the database of interacting proteins: 2001 update. Nucleic Acids Res 29:239–241. doi: 10.1093/nar/28.1.289 PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database – 2009 update. Nucleic Acids Res 37:D767–D772. doi: 10.1093/nar/gkn892 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. doi: 10.1093/nar/gkr930 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res. doi: 10.1093/nar/gkr1088 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119. doi: 10.1093/nar/gkh131 PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707–726. doi: 10.1093/bioinformatics/16.8.707 CrossRefPubMedGoogle Scholar
  56. 56.
    Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 418–429. doi:  10.1142/9789814447331_0040
  57. 57.
    Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8. doi: 10.1371/journal.pbio.0050008 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Margolin A, Wang K, Lim WK et al (2006) Reverse engineering cellular networks. Nat Protoc 1:662–671, doi: citeulike-article-id:1224968CrossRefPubMedGoogle Scholar
  59. 59.
    Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764. doi: 10.1093/bioinformatics/bti062 CrossRefPubMedGoogle Scholar
  60. 60.
    De la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574. doi: 10.1093/bioinformatics/bth445 CrossRefPubMedGoogle Scholar
  61. 61.
    De la Fuente A (2010) From “differential expression” to “differential networking” – identification of dysfunctional regulatory networks in diseases. Trends Genet 26:326–333. doi: 10.1016/j.tig.2010.05.001 CrossRefPubMedGoogle Scholar
  62. 62.
    Su J, Yoon BJ, Dougherty ER (2009) Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PLoS One 4:e8161. doi: 10.1371/journal.pone.0008161 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Zhao X-M, Guimin Q (2013) Identifying biomarkers with differential analysis. In: Shen B (ed) Bioinformatics for diagnosis, prognosis and treatment of complex diseases. Springer, Dordrecht, The Netherlands, pp 17–31CrossRefGoogle Scholar
  64. 64.
    Zeng T, Sun S-Y, Wang Y et al (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J 280:5682–5695. doi: 10.1111/febs.12536 CrossRefPubMedGoogle Scholar
  65. 65.
    Staiger C, Cadot S, Györffy B et al (2013) Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis. Front Genet 4:289. doi: 10.3389/fgene.2013.00289 PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Guo Z, Zhang T, Li X et al (2005) Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 6:58. doi: 10.1186/1471-2105-6-58 PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Staiger C, Cadot S, Kooter R et al (2012) A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS One. doi: 10.1371/journal.pone.0034796 Google Scholar
  68. 68.
    Tomfohr J, Lu J, Kepler TB (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6:225. doi: 10.1186/1471-2105-6-225 PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Liu K-Q, Liu Z-P, Hao J-K et al (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics 13:126. doi: 10.1186/1471-2105-13-126 PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357. doi: 10.1038/nature04296 CrossRefPubMedGoogle Scholar
  71. 71.
    Lee E, Chuang H-Y, Kim J-W et al (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4:e1000217. doi: 10.1371/journal.pcbi.1000217 PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Yang R, Daigle BJ, Petzold LR, Doyle FJ (2012) Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinformatics 13:12. doi: 10.1186/1471-2105-13-12 PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Vaske CJ, Benz SC, Sanborn JZ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. doi: 10.1093/bioinformatics/btq182 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi: 10.1073/pnas.0506580102 PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82. doi: 10.1093/bioinformatics/btn577 PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Haynes WA, Higdon R, Stanberry L et al (2013) Correction: differential expression analysis for pathways. PLoS Comput Biol. doi: 10.1371/annotation/58cf4d21-f9b0-4292-94dd-3177f393a284 Google Scholar
  77. 77.
    Kim S, Kon M, DeLisi C (2012) Pathway-based classification of cancer subtypes. Biol Direct 7:21. doi: 10.1186/1745-6150-7-21 PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Pyatnitskiy M, Mazo I, Shkrob M et al (2014) Clustering gene expression regulators: new approach to disease subtyping. PLoS One. doi: 10.1371/journal.pone.0084955 Google Scholar
  79. 79.
    Chuang H-Y, Lee E, Liu Y-T et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140. doi: 10.1038/msb4100180 PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Gambardella G, Moretti M, de Cegli R et al (2013) Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics 29:1776–1785, doi: citeulike-article-id:12415017\rdoi: 10.1093/bioinformatics/btt290PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719–732. doi: 10.1038/nrg3552 PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol. doi: 10.1038/msb.2011.99 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Liu X, Liu Z-P, Zhao X-M, Chen L (2012) Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc 19:241–248. doi: 10.1136/amiajnl-2011-000658 PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Wang Y-C, Chen B-S (2011) A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics 4:2PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Zhang B, Li H, Riggins RB et al (2009) Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 25:526–532. doi: 10.1093/bioinformatics/btn660 PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Tian Y, Zhang B, Hoffman EP et al (2014) Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks. BMC Syst Biol 8:87. doi: 10.1186/s12918-014-0087-1 PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Zhang B, Wang Y (2012) Learning structural changes of Gaussian graphical models in controlled experiments. Proceedings of the twenty-first conference on uncertainty in artificial intelligenceGoogle Scholar
  88. 88.
    Heckerman D, Chickering DM, Meek C et al (2000) Dependency networks for inference, collaborative filtering, and data visualization. J Mach Learn Res 1:49–75. doi: 10.1162/153244301753344614 Google Scholar
  89. 89.
    Gámez J, Mateo J, Puerta J (2006) Dependency networks based classifiers: learning models by using independence tests. Proceedings of the 3rd European workshop on probabilistic graphical models. pp 115–122Google Scholar
  90. 90.
    Sun S-Y, Liu Z-P, Zeng T et al (2013) Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Sci Rep 3:2268. doi: 10.1038/srep02268 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Islam MF, Hoque MM, Banik RS et al (2013) Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks. J Clin Bioinforma 3:19. doi: 10.1186/2043-9113-3-19 PubMedCentralCrossRefPubMedGoogle Scholar
  92. 92.
    Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204. doi: 10.1038/nbt.1522 CrossRefPubMedGoogle Scholar
  93. 93.
    Zhu Y, Shen X, Pan W (2009) Network-based support vector machine for classification of microarray samples. BMC Bioinformatics 10(Suppl 1):S21. doi: 10.1186/1471-2105-10-S1-S21 PubMedCentralCrossRefPubMedGoogle Scholar
  94. 94.
    Johannes M, Brase JC, Fröhlich H et al (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 26:2136–2144. doi: 10.1093/bioinformatics/btq345 CrossRefPubMedGoogle Scholar
  95. 95.
    Stumpf MPH, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964. doi: 10.1073/pnas.0708078105 PubMedCentralCrossRefPubMedGoogle Scholar
  96. 96.
    Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedCentralCrossRefPubMedGoogle Scholar
  97. 97.
    Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117. doi: 10.1186/gb-2003-4-9-117 PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Meyer P, Alexopoulos LG, Bonk T et al (2011) Verification of systems biology research in the age of collaborative competition. Nat Biotechnol 29:811–815. doi: 10.1038/nbt.1968 CrossRefPubMedGoogle Scholar
  99. 99.
    Jarchum I, Jones S (2015) DREAMing of benchmarks. Nat Biotechnol 33:49–50. doi: 10.1038/nbt.3115 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sonja Strunz
    • 1
  • Olaf Wolkenhauer
    • 2
    • 3
  • Alberto de la Fuente
    • 1
  1. 1.Biomathematics and Bioinformatics UnitLeibniz-Institute for Farm Animal Biology (FBN), Institute of Genetics and BiometryDummerstorfGermany
  2. 2.Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
  3. 3.Stellenbosch Institute for Advanced Study (STIAS)Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations