RNA Systems Biology for Cancer: From Diagnosis to Therapy

  • Raheleh Amirkhah
  • Ali Farazmand
  • Olaf Wolkenhauer
  • Ulf Schmitz
Part of the Methods in Molecular Biology book series (MIMB, volume 1386)


It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.

Key words

Non-coding RNA microRNA Integrative workflows Bioinformatics tools Systems biology methods Biomarker prediction Therapeutic target identification 


  1. 1.
    Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5:140PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Gilbert W (1986) Origin of life: the RNA world. Nature 319(6055):618CrossRefGoogle Scholar
  3. 3.
    Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46(1):18–36PubMedCrossRefGoogle Scholar
  4. 4.
    Poole AM, Jeffares DC, Penny D (1998) The path from the RNA world. J Mol Evol 46(1):1–17PubMedCrossRefGoogle Scholar
  5. 5.
    Lau NC et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862PubMedCrossRefGoogle Scholar
  6. 6.
    Soifer HS, Rossi JJ, Sætrom P (2007) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15(12):2070–2079PubMedCrossRefGoogle Scholar
  7. 7.
    Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Calin GA et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101(32):11755–11760PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O, Farazmand A (2015) MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression: miRNA targets in colorectal cancer. Genes, Chromosome Canc 54(3):129–141Google Scholar
  10. 10.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedCrossRefGoogle Scholar
  13. 13.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  14. 14.
    Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, Wang SB, Wang YZ, Yang Y, Yang N, Zhou WP, Yang GS et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681PubMedCrossRefGoogle Scholar
  15. 15.
    McCann KL, Baserga SJ (2012) Long noncoding RNAs as sinks in Prader-Willi syndrome. Mol Cell 48(2):155–157PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hung T et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Feng J et al (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Poliseno L et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301):1033–1038PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Salmena L et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Leucci E et al (2013) microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci Rep 3:2535PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45:1895–1910PubMedCrossRefGoogle Scholar
  22. 22.
    Kemena C et al (2013) Using tertiary structure for the computation of highly accurate multiple RNA alignments with the SARA-Coffee package. Bioinformatics 29(9):1112–1119PubMedCrossRefGoogle Scholar
  23. 23.
    Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10Google Scholar
  24. 24.
    Yang QQ, Deng YF (2014) Long non-coding RNAs as novel biomarkers and therapeutic targets in head and neck cancers. Int J Clin Exp Pathol 7(4):1286–1292PubMedCentralPubMedGoogle Scholar
  25. 25.
    Shen Z et al (2014) Long non-coding RNA profiling in laryngeal squamous cell carcinoma and its clinical significance: potential biomarkers for LSCC. PLoS One 9(9):e108237PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zheng HT et al (2014) High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int J Clin Exp Pathol 7(6):3174–3181PubMedCentralPubMedGoogle Scholar
  27. 27.
    Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L et al (2014) Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 9(6):e100893. doi:10.1371/journal.pone.0100893Google Scholar
  29. 29.
    Tang L et al (2013) Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int 2013Google Scholar
  30. 30.
    Khaitan D et al (2011) The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71(11):3852–3862PubMedCrossRefGoogle Scholar
  31. 31.
    Garzon R et al (2006) MicroRNA expression and function in cancer. Trends Mol Med 12(12):580–587PubMedCrossRefGoogle Scholar
  32. 32.
    Schmitz U, Wolkenhauer O, Vera J (2013) MicroRNA cancer regulation advanced concepts, bioinformatics and systems biology tools. Springer, DordrechtGoogle Scholar
  33. 33.
    Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37(8):2419–2433PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Friedman Y, Balaga O, Linial M (2013) Working together: combinatorial regulation by microRNAs. In: Schmitz U, Wolkenhauer O, Vera J (eds) MicroRNA cancer regulation. Springer, Dordrecht, The Netherlands, pp 317–337CrossRefGoogle Scholar
  35. 35.
    Lai X, Schmitz U, Gupta SK et al (2012) Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 40(18):8818–8834PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Vera J et al (2013) MicroRNA-regulated networks: the perfect storm for classical molecular biology, the ideal scenario for systems biology. Adv Exp Med Biol 774:55–76PubMedCrossRefGoogle Scholar
  37. 37.
    Vera J, Wolkenhauer O, Schmitz U (2014) Current achievements in cancer systems biology. In: eLS. Wiley, Chichester.
  38. 38.
    Bhattacharya A et al (2012) Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene 32:3175–3183PubMedCrossRefGoogle Scholar
  39. 39.
    Alla V et al (2012) E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry. Cell Cycle 11(16):3067–3078PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Vera J et al (2013) Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 73(12):3511–3524PubMedCrossRefGoogle Scholar
  41. 41.
    Bhattacharya A et al (2015) miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget 6(5):2966–2980PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Knoll S et al (2014) E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15(12):1315–1329PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Vaske CJ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12):i237–i245PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ruan K, Fang X, Ouyang G (2009) MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285(2):116–126PubMedCrossRefGoogle Scholar
  45. 45.
    Cascione L et al (2013) Elucidating the role of microRNAs in cancer through data mining techniques. Adv Exp Med Biol 774:291–315PubMedCrossRefGoogle Scholar
  46. 46.
    Liu DF et al (2012) MicroRNA expression profile analysis reveals diagnostic biomarker for human prostate cancer. Asian Pac J Cancer Prev 13(7):3313–3317PubMedCrossRefGoogle Scholar
  47. 47.
    Khanin R, Vinciotti V (2008) Computational modeling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15(3):305–316PubMedCrossRefGoogle Scholar
  48. 48.
    Lee Y et al (2010) Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol 6(4):e1000730PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nikolov S et al (2011) A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci 130(1):55–69PubMedCrossRefGoogle Scholar
  50. 50.
    Weber M et al (2013) Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation. BMC Syst Biol 7:124PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Röhr C et al (2013) High-throughput miRNA and mRNA sequencing of paired colorectal normal, tumor and metastasis tissues and bioinformatic modeling of miRNA-1 therapeutic applications. PLoS One 8(7):e67461PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Batagov AO et al (2013) Role of genomic architecture in the expression dynamics of long noncoding RNAs during differentiation of human neuroblastoma cells. BMC Syst Biol 7(Suppl 3):S11PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Enright AJ et al (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6(6):397–398PubMedCrossRefGoogle Scholar
  55. 55.
    Ritchie W, Rasko JEJ, Flamant S (2013) MicroRNA target prediction and validation. In: Schmitz U, Wolkenhauer O, Vera J (eds) MicroRNA cancer regulation. Springer, Dordrecht, The Netherlands, pp 39–53CrossRefGoogle Scholar
  56. 56.
    Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3(11):881–886PubMedCrossRefGoogle Scholar
  57. 57.
    Vergoulis T et al (2011) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40(D1):D222–D229PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85Google Scholar
  59. 59.
    Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773PubMedCrossRefGoogle Scholar
  60. 60.
    Farh KK-H et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755):1817–1821PubMedCrossRefGoogle Scholar
  61. 61.
    Huang JC et al (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4(12):1045–1049PubMedCrossRefGoogle Scholar
  62. 62.
    Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24(3):325–332PubMedCrossRefGoogle Scholar
  63. 63.
    Volinia S et al (2009) Identification of microRNA activity by Targets’ Reverse EXpression. Bioinformatics 26(1):91–97PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Huang JC, Frey BJ, Morris QD (2008) Comparing sequence and expression for predicting microRNA targets using GenMiR3. Pac Symp Biocomput 2008:52–63Google Scholar
  65. 65.
    Bhattacharya A, Kunz M (2013) Target identification, microRNA. In: Dubitzky W et al (eds) Encyclopedia of systems biology. Springer, New York, pp 2138–2142CrossRefGoogle Scholar
  66. 66.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedCrossRefGoogle Scholar
  67. 67.
    Licatalosi DD et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Schmitz U (2013) MicroRNA target regulation. In: Dubitzky W et al (eds) Encyclopedia of systems biology. Springer, New York, pp 1346–1350CrossRefGoogle Scholar
  69. 69.
    Lai X et al (2013) A systems’ biology approach to study microRNA-mediated gene regulatory networks. Biomed Res Int 2013Google Scholar
  70. 70.
    Schmitz U et al (2014) Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res 42(12):7539–7552PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13(5):358–369PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Gupta SK, Schmitz U (2011) Bioinformatics analysis of high-throughput experiments. In: Singh MP, Agrawal A, Sharma B (eds) Recent trends in biotechnology. Nova Science Publishers, Inc., New York, NY, pp 129–156Google Scholar
  73. 73.
    Dennis G Jr et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3PubMedCrossRefGoogle Scholar
  74. 74.
    Satoh J-I (2012) Molecular network analysis of human microRNA targetome: from cancers to Alzheimer’s disease. BioData Min 5(1):17PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Forbes SA et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43(D1):D805–D811PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Jiang Q et al (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–D104PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Xie B et al (2013) miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29(5):638–644PubMedCrossRefGoogle Scholar
  78. 78.
    Russo F et al (2012) miRandola: extracellular circulating microRNAs database. PLoS One 7(10):e47786PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Ruepp A, Kowarsch A, Theis F (2012) PhenomiR: microRNAs in human diseases and biological processes. Methods Mol Biol 822:249–260PubMedCrossRefGoogle Scholar
  80. 80.
    Bhattacharya A, Ziebarth JD, Cui Y (2013) SomamiR: a database for somatic mutations impacting microRNA function in cancer. Nucleic Acids Res 41(Database issue):D977–D982PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Chen G et al (2012) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41(D1):D983–D986PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Cun Y, Frohlich H (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One 8(9):e73074PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Stahlhut C, Slack FJ (2013) MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med 5(12):111PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Ueda T et al (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Davison TS, Johnson CD, Andruss BF (2006) Analyzing micro-RNA expression using microarrays. Methods Enzymol 411:14–34PubMedCrossRefGoogle Scholar
  86. 86.
    Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2):70–76PubMedCrossRefGoogle Scholar
  87. 87.
    Thomas RK et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39(3):347–351PubMedCrossRefGoogle Scholar
  88. 88.
    El-Metwally S et al (2013) Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol 9(12):e1003345PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Ren X et al (2012) A unified computational model for revealing and predicting subtle subtypes of cancers. BMC Bioinformatics 13:70PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Keutgen XM et al (2012) A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res 18(7):2032–2038PubMedCrossRefGoogle Scholar
  91. 91.
    Kuo TY et al (2012) Computational analysis of mRNA expression profiles identifies microRNA-29a/c as predictor of colorectal cancer early recurrence. PLoS One 7(2):e31587PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Steyerberg EW et al (2013) Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 10(2):e1001381PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Fan C et al (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genomics 4:3PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Gould Rothberg BE et al (2009) Melanoma prognostic model using tissue microarrays and genetic algorithms. J Clin Oncol 27(34):5772–5780PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Motzer RJ et al (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17(8):2530–2540PubMedGoogle Scholar
  96. 96.
    Shah MY, Calin GA (2014) MicroRNAs as therapeutic targets in human cancers. Wiley Interdiscip Rev RNA 5(4):537–548PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Wu W (2010) MicroRNA: potential targets for the development of novel drugs? Drugs R D 10(1):1–8PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Gironella M et al (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 104(41):16170–16175PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Lu Y et al (2009) A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 37(3):e24PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Kota J et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Misso G et al (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194PubMedCrossRefGoogle Scholar
  102. 102.
    Zhao JJ et al (2008) MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283(45):31079–31086PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Ji Q et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Deng J et al (2014) Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun 443(3):789–795PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang Y et al (2014) MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One 9(4):e93917PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Malek E, Jagannathan S, Driscoll JJ (2014) Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 5(18):8027–8038PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Fan Y et al (2014) Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281(7):1750–1758PubMedCrossRefGoogle Scholar
  108. 108.
    Chowdhury S, Pradhan RN, Sarkar RR (2013) Structural and logical analysis of a comprehensive hedgehog signaling pathway to identify alternative drug targets for glioma, colon and pancreatic cancer. PLoS One 8(7):e69132PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Rateitschak K et al (2012) Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells. PLoS Comput Biol 8(12):e1002815PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Wu M, Chan C (2014) Prediction of therapeutic microRNA based on the human metabolic network. BioinformaticsGoogle Scholar
  111. 111.
    Wu M, Chan C (2014) Prediction of therapeutic microRNA based on the human metabolic network. Bioinformatics. doi: 10.1093/bioinformatics/btt751 Google Scholar
  112. 112.
    Zeng T et al (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist Updat 17(3):64–76PubMedCrossRefGoogle Scholar
  113. 113.
    Kanagavel D et al (2010) A prognostic model in patients treated for metastatic gastric cancer with second-line chemotherapy. Ann Oncol 21(9):1779–1785PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raheleh Amirkhah
    • 1
  • Ali Farazmand
    • 1
  • Olaf Wolkenhauer
    • 2
    • 3
  • Ulf Schmitz
    • 2
  1. 1.Department of Cell and Molecular Biology, School of Biology, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
  3. 3.Stellenbosch Institute for Advanced Study (STIAS)Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa

Personalised recommendations