Skip to main content

Using Hidden Behavioral Patterns to Study Nausea in a Preclinical Model

  • Protocol
  • First Online:
Discovering Hidden Temporal Patterns in Behavior and Interaction

Part of the book series: Neuromethods ((NM,volume 111))

Abstract

Nausea is a common clinical symptom reported by many patients experiencing cytotoxic anticancer therapy, gastrointestinal disease, and postoperative recovery. Although the neurological basis of vomiting is reasonably well established, an understanding of the physiology of nausea is lacking. The primary barrier to mechanistic research on nausea is the lack of appropriate animal models. Indeed investigating the effects of anti-nausea drugs in preclinical models is difficult because the primary readout is suppression of vomiting. However, animals often show a behavioral profile of sickness, associated with reduced feeding and movement, and possibly these general behavioral measures are signs of nausea. Here we applied t-pattern analysis to determine patterns of behavior associated with emesis as a potential measure of nausea. Musk shrews were used for these experiments because they have a vomiting reflex and other laboratory animals (rats and mice) do not. Standard emetic test agents were used in Study 1, the chemotherapy agent cisplatin (intraperitoneal), and Study 2, nicotine (subcutaneous) and copper sulfate (intragastric). Emesis and other behaviors were coded and tracked from video files. T-pattern analysis revealed patterns of behavior associated with emesis. Long-term tests (3 days of continuous video recording) showed that eating and drinking, and other larger body movements, including rearing, grooming, and body rotation, were significantly less common in cisplatin-induced emesis-related behavioral patterns in real versus randomized data. Short-term experiments (30 min) using nicotine and copper sulfate showed no difference between male and female shrews but there were more behavioral patterns associated with nicotine compared to copper sulfate treatment. The current approach to behavioral analysis in a preclinical model for emesis using t-pattern analysis could be used to assess the effects of drugs used to control nausea and its potential correlates, including reduced feeding and changed activity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olver I, Molassiotis A, Aapro M, Herrstedt J, Grunberg S, Morrow G (2010) Antiemetic research: future directions. Support Care Cancer 19(Suppl 1):S49–S55

    PubMed  Google Scholar 

  2. Sanger GJ, Andrews PL (2006) Treatment of nausea and vomiting: gaps in our knowledge. Auton Neurosci 129:3–16

    Article  CAS  PubMed  Google Scholar 

  3. Billig I, Yates BJ, Rinaman L (2001) Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 281:R1243–R1255

    CAS  PubMed  Google Scholar 

  4. De Jonghe BC, Horn CC (2008) Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat. Am J Physiol Regul Integr Comp Physiol 294:R756–R765

    Article  PubMed  Google Scholar 

  5. Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR (2012) The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 62:1916–1927

    Article  CAS  PubMed  Google Scholar 

  6. Parker LA (2006) The role of nausea in taste avoidance learning in rats and shrews. Auton Neurosci 125:34–41

    Article  PubMed  Google Scholar 

  7. Percie du Sert N, Chu KM, Wai MK, Rudd JA, Andrews PL (2009) Reduced normogastric electrical activity associated with emesis: a telemetric study in ferrets. World J Gastroenterol 15:6034–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Percie du Sert N, Chu KM, Wai MK, Rudd JA, Andrews PL (2010) Telemetry in a motion-sickness model implicates the abdominal vagus in motion-induced gastric dysrhythmia. Exp Physiol 95:768–773

    Article  PubMed  Google Scholar 

  9. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  CAS  PubMed  Google Scholar 

  10. Bermudez J, Boyle EA, Miner WD, Sanger GJ (1988) The anti-emetic potential of the 5-hydroxytryptamine3 receptor antagonist BRL 43694. Br J Cancer 58:644–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PL (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. Br J Pharmacol 115:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Magnusson MS (2000) Discovering hidden time patterns in behavior: T-patterns and their detection. Behav Res Methods Instrum Comput 32:93–110

    Article  CAS  PubMed  Google Scholar 

  13. Bonasera SJ, Schenk AK, Luxenberg EJ, Tecott LH (2008) A novel method for automatic quantification of psychostimulant-evoked route-tracing stereotypy: application to Mus musculus. Psychopharmacology (Berl) 196:591–602

    Article  CAS  Google Scholar 

  14. Casarrubea M, Sorbera F, Magnusson M, Crescimanno G (2010) Temporal patterns analysis of rat behavior in hole-board. Behav Brain Res 208:124–131

    Article  PubMed  Google Scholar 

  15. Chan SW, Rudd JA, Lin G, Li P (2007) Action of anti-tussive drugs on the emetic reflex of Suncus murinus (house musk shrew). Eur J Pharmacol 559:196–201

    Article  CAS  PubMed  Google Scholar 

  16. Horn CC, Henry S, Meyers K, Magnusson MS (2011) Behavioral patterns associated with chemotherapy-induced emesis: A potential signature for nausea in musk shrews. Front Neurosci 5:88

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang D, Meyers K, Henry S, De la Torre F, Horn CC (2011) Computerized detection and analysis of cancer chemotherapy-induced emesis in a small animal model, musk shrew. J Neurosci Methods 197:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henningfield JE, Miyasato K, Jasinski DR (1985) Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther 234:1–12

    CAS  PubMed  Google Scholar 

  19. Pizarro F, Olivares M, Uauy R, Contreras P, Rebelo A, Gidi V (1999) Acute gastrointestinal effects of graded levels of copper in drinking water. Environ Health Perspect 107:117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warr DG, Grunberg SM, Gralla RJ, Hesketh PJ, Roila F, Wit R, Carides AD, Taylor A, Evans JK, Horgan KJ (2005) The oral NK(1) antagonist aprepitant for the prevention of acute and delayed chemotherapy-induced nausea and vomiting: Pooled data from 2 randomised, double-blind, placebo controlled trials. Eur J Cancer 41:1278–1285

    Article  CAS  PubMed  Google Scholar 

  21. Andrews PL, Okada F, Woods AJ, Hagiwara H, Kakaimoto S, Toyoda M, Matsuki N (2000) The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew. Br J Pharmacol 130:1247–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Jonghe BC, Horn CC (2009) Chemotherapy agent cisplatin induces 48-h Fos expression in the brain of a vomiting species, the house musk shrew (Suncus murinus). Am J Physiol Regul Integr Comp Physiol 296:R902–R911

    Article  PubMed  PubMed Central  Google Scholar 

  23. Horn CC, Still L, Fitzgerald C, Friedman MI (2010) Food restriction, refeeding, and gastric fill fail to affect emesis in musk shrews. Am J Physiol Gastrointest Liver Physiol 298:G25–G30

    Google Scholar 

  24. Sam TS, Cheng JT, Johnston KD, Kan KK, Ngan MP, Rudd JA, Wai MK, Yeung JH (2003) Action of 5-HT3 receptor antagonists and dexamethasone to modify cisplatin-induced emesis in Suncus murinus (house musk shrew). Eur J Pharmacol 472:135–145

    Article  CAS  PubMed  Google Scholar 

  25. Rissman EF, Silveira J, Bronson FH (1988) Patterns of sexual receptivity in the female musk shrew (Suncus murinus). Horm Behav 22:186–193

    Article  CAS  PubMed  Google Scholar 

  26. Castaner M, Torrents C, Anguera MT, Dinusova M, Jonsson GK (2009) Identifying and analyzing motor skill responses in body movement and dance. Behav Res Methods 41:857–867

    Article  PubMed  Google Scholar 

  27. Kemp AS, Fillmore PT, Lenjavi MR, Lyon M, Chicz-Demet A, Touchette PE, Sandman CA (2008) Temporal patterns of self-injurious behavior correlate with stress hormone levels in the developmentally disabled. Psychiatry Res 157:181–189

    Article  CAS  PubMed  Google Scholar 

  28. Kerepesi A, Jonsson GK, Miklosi A, Topal J, Csanyi V, Magnusson MS (2005) Detection of temporal patterns in dog-human interaction. Behav Processes 70:69–79

    Article  CAS  PubMed  Google Scholar 

  29. Lyon M, Kemp AS (2004) Increased temporal patterns in choice responding and altered cognitive processes in schizophrenia and mania. Psychopharmacology (Berl) 172:211–219

    Article  CAS  Google Scholar 

  30. Casarrubea M, Sorbera F, Magnusson MS, Crescimanno G (2010) T-pattern analysis of diazepam-induced modifications on the temporal organization of rat behavioral response to anxiety in hole board. Psychopharmacology (Berl) 215:177–189

    Article  Google Scholar 

  31. Andrews PL, Horn CC (2006) Signals for nausea and emesis: implications for models of upper gastrointestinal diseases. Auton Neurosci 125:100–115

    Article  PubMed  PubMed Central  Google Scholar 

  32. Andrews PLR (1995) Why do some animals lack a vomiting reflex? Physiol Zool 68:61

    Google Scholar 

  33. Horn CC, Kimball BA, Gathright GR, Yates BJ, Andrews PLR (2010) Why don’t rats and mice vomit? A behavioral and anatomical investigation. Appetite 54:650

    Google Scholar 

  34. Parker LA, Limebeer CL (2006) Conditioned gaping in rats: a selective measure of nausea. Auton Neurosci 129:36–41

    Article  PubMed  Google Scholar 

  35. Yamamoto K, Ngan MP, Takeda N, Yamatodani A, Rudd JA (2004) Differential activity of drugs to induce emesis and pica behavior in Suncus murinus (house musk shrew) and rats. Physiol Behav 83:151–156

    Article  CAS  PubMed  Google Scholar 

  36. Takeda N, Hasegawa S, Morita M, Horii A, Uno A, Yamatodani A, Matsunaga T (1995) Neuropharmacological mechanisms of emesis. II. Effects of antiemetic drugs on cisplatin-induced pica in rats. Methods Find Exp Clin Pharmacol 17:647–652

    CAS  PubMed  Google Scholar 

  37. Takeda N, Hasegawa S, Morita M, Matsunaga T (1993) Pica in rats is analogous to emesis: an animal model in emesis research. Pharmacol Biochem Behav 45:817–821

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto K, Nakai M, Nohara K, Yamatodani A (2007) The anti-cancer drug-induced pica in rats is related to their clinical emetogenic potential. Eur J Pharmacol 554:34–39

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa N, Fukuda H, Hatano M, Koga T, Shiroshita Y (1998) A neurokinin-1 receptor antagonist reduced hypersalivation and gastric contractility related to emesis in dogs. Am J Physiol 275:G1193–G1201

    CAS  PubMed  Google Scholar 

  40. Koch KL (1997) A noxious trio: nausea, gastric dysrhythmias and vasopressin. Neurogastroenterol Motil 9:141–142

    Article  CAS  PubMed  Google Scholar 

  41. Lau AH, Rudd JA, Yew DT (2005) Action of ondansetron and CP-99,994 on cisplatin-induced emesis and locomotor activity in Suncus murinus (house musk shrew). Behav Pharmacol 16:605–612

    Article  CAS  PubMed  Google Scholar 

  42. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AM, Ferrari MD, Craig KD, Mogil JS (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7:447–449

    Article  CAS  PubMed  Google Scholar 

  43. Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izidio GS (2008) Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res 193:277–288

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horn, C.C., Magnusson, M.S. (2016). Using Hidden Behavioral Patterns to Study Nausea in a Preclinical Model. In: Magnusson, M., Burgoon, J., Casarrubea, M. (eds) Discovering Hidden Temporal Patterns in Behavior and Interaction. Neuromethods, vol 111. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3249-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3249-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3248-1

  • Online ISBN: 978-1-4939-3249-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics