Cancer Gene Profiling for Response Prediction

Part of the Methods in Molecular Biology book series (MIMB, volume 1381)

Abstract

The revolution of genomic technologies, including gene expression profiling, high-resolution mapping of genomic imbalances, and next-generation sequencing, allows us to establish molecular portraits of cancer cells with unprecedented accuracy. This generates hope and justifies anticipation that disease diagnosis, prognosis, and the choice of treatment will be adapted to the individual needs of patients based on molecular evidence.

Preoperative treatment strategies are now recommended for a variety of human cancers. Unfortunately, the response of individual tumors to a preoperative treatment is not uniform, and ranges from complete regression to resistance. This poses a considerable clinical dilemma, as patients with a priori resistant tumors could either be spared exposure to radiation or DNA-damaging drugs, i.e., could be referred to primary surgery, or dose-intensified protocols could be pursued. Because the response of an individual tumor as well as therapy-induced side effects represent the major limiting factors of current treatment strategies, identifying molecular markers of response or for treatment toxicity has become exceedingly important.

However, complex phenotypes such as tumor responsiveness to multimodal treatments probably do not depend on the expression levels of just one or a few genes and proteins. Therefore, methods that allow comprehensive interrogation of genetic pathways and networks hold great promise in delivering such tumor-specific signatures, since expression levels of thousands of genes can be monitored simultaneously. Over the past few years, microarray technology has emerged as a central tool in addressing pertinent clinical questions, the answers to which are critical for the realization of a personalized genomic medicine, in which patients will be treated based on the biology of their tumor and their genetic profile (Quackenbush, N Engl J Med 354:2463–72, 2006; Jensen et al., Curr Opin Oncol 18:374–380, 2006; Bol and Ebner, Pharmacogenomics 7:227–235, 2006; Nevins and Potti, Nat Rev Genet 8:601–609, 2007).

Key words

Gene expression profiling Microarrays Rectal cancer Preoperative chemoradiotherapy Response prediction Personalized medicine 

Notes

Acknowledgements

The authors would like to thank PD Dr. Jochen Gaedcke, PD Dr. Marian Grade, Dr. Gabriela Salinas-Riester, and Mr. Chan Rong Lai for their advice. This work was supported by the Deutsche Forschungsgemeinschaft (KFO 179).

References

  1. 1.
    Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–35CrossRefPubMedGoogle Scholar
  2. 2.
    Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, Weinstein JN (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–44CrossRefPubMedGoogle Scholar
  3. 3.
    Mariadason JM, Arango D, Shi Q, Wilson AJ, Corner GA, Nicholas C, Aranes MJ, Lesser M, Schwartz EL, Augenlicht LH (2003) Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 63:8791–812PubMedGoogle Scholar
  4. 4.
    Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy S, Cantor AB, Scuto A, Li C, Zhang S, Jove R, Yeatman T (2005) Prediction of radiation sensitivity using a gene expression classifier. Cancer Res 65:7169–76CrossRefPubMedGoogle Scholar
  5. 5.
    Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, Cragun J, Cottrill H, Kelley MJ, Petersen R, Harpole D, Marks J, Berchuck A, Ginsburg GS, Febbo P, Lancaster J, Nevins JR (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–300CrossRefPubMedGoogle Scholar
  6. 6.
    Lønning PE, Knappskog S, Staalesen V, Chrisanthar R, Lillehaug JR (2007) Breast cancer prognostication and prediction in the postgenomic era. Ann Oncol 18:1293–306CrossRefPubMedGoogle Scholar
  7. 7.
    Luthra R, Wu TT, Luthra MG, Izzo J, Lopez-Alvarez E, Zhang L, Bailey J, Lee JH, Bresalier R, Rashid A, Swisher SG, Ajani JA (2006) Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J Clin Oncol 24:259–67CrossRefPubMedGoogle Scholar
  8. 8.
    Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau F, Chalbos P, Bareil C, Kramar A, Salvetat N, Fraslon C, Conseiller E, Granci V, Leblanc B, Pau B, Martineau P, Ychou M (2007) Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J Clin Oncol 25:773–80PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Haider S, Wang J, Nagano A, Desai A, Arumugam P, Dumartin L, Fitzgibbon J, Hagemann T, Marshall JF, Kocher HM, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR, Chelala C (2014) A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Med 6(12):105PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–6CrossRefGoogle Scholar
  11. 11.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  12. 12.
    Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ (2006) TRANSBIG Consortium. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–92CrossRefPubMedGoogle Scholar
  13. 13.
    Drukker CA, Bueno-de-Mesquita JM, Retèl VP, van Harten WH, van Tinteren H, Wesseling J, Roumen RM, Knauer M, van’t Veer LJ, Sonke GS, Rutgers EJ, van de Vijver MJ, Linn SC (2013) A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer 133:929–36PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A, Koontz J, Kratzke R, Watson MA, Kelley M, Ginsburg GS, West M, Harpole DH Jr, Nevins JR (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355:570–80CrossRefPubMedGoogle Scholar
  15. 15.
    Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Pontén F, König A, Fernandes O, Karlsson M, Helenius G, Karlsson C, Rahnenführer J, Hengstler JG, Micke P (2013) Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clin Cancer Res 19(1):194–204CrossRefPubMedGoogle Scholar
  16. 16.
    Bogaerts J, Cardoso F, Buyse M, Braga S, Loi S, Harrison JA, Bines J, Mook S, Decker N, Ravdin P, Therasse P, Rutgers E, van’t Veer LJ, Piccart M, TRANSBIG Consortium (2006) Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract Oncol 3:540–51CrossRefPubMedGoogle Scholar
  17. 17.
    Anguiano A, Potti A (2007) Genomic signatures individualize therapeutic decisions in non-small-cell lung cancer. Expert Rev Mol Diagn 7:837–44CrossRefPubMedGoogle Scholar
  18. 18.
    Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R, Montagna C, Füzesi L, Langer C, Becker H, Liersch T, Ried T (2005) Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 23:1826–38CrossRefPubMedGoogle Scholar
  19. 19.
    Dangl A, Demiroglu SY, Gaedcke J, Helbing K, Jo P, Rakebrandt F, Rienhoff O, Sax U (2010) The IT-infrastructure of a biobank for an academic medical center. Stud Health Technol Inform 160:1334–8PubMedGoogle Scholar
  20. 20.
    Hall JA, Brown R (2013) Developing translational research infrastructure and capabilities associated with cancer clinical trials. Expert Rev Mol Med 15, e11CrossRefPubMedGoogle Scholar
  21. 21.
    de Reyniès A, Geromin D, Cayuela JM, Petel F, Dessen P, Sigaux F, Rickman DS (2006) Comparison of the latest commercial short and long oligonucleotide microarray technologies. BMC Genomics 7:51PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurban P, de Longueville F, Fuscoe JC, Tong W, Shi L, Wolfinger RD (2006) Performance comparison of one-color and two-color platforms within the microarray quality control (MAQC) project. Nat Biotechnol 24:1140–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of General, Visceral, and Pediatric SurgeryUniversity Medical Center Göttingen, Georg-August-UniversityGöttingenGermany

Personalised recommendations