Advertisement

Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry

  • Marc Vogel
  • Beatrix SuessEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1380)

Abstract

Isothermal titration calorimetry (ITC) is a powerful label-free technique to determine the binding constant as well as thermodynamic parameters of a binding reaction and is therefore well suited for the analysis of small molecule—RNA aptamer interaction. We will introduce you to the method and present a protocol for sample preparation and the calorimetric measurement. A detailed note section will point out useful tips and pitfalls.

Key words

RNA Aptamer Small molecule ITC Kd In vitro transcription 

Notes

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (SFB902 A2) and EU FP7-KBBE-2013-7 no. 613745, Promys. We thank Katharina Keim for critical reading the manuscript.

References

  1. 1.
    Groher F, Suess B (2014) Synthetic riboswitches—a tool comes of age. Biochim Biophys Acta 1839:964–973CrossRefPubMedGoogle Scholar
  2. 2.
    Ilgu M, Wang T, Lamm MH, Nilsen-Hamilton M (2013) Investigating the malleability of RNA aptamers. Methods 63:178–187CrossRefPubMedGoogle Scholar
  3. 3.
    Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137CrossRefPubMedGoogle Scholar
  4. 4.
    Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 81:2035–2039PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Doherty EA, Doudna JA (2001) Ribozyme structures and mechanisms. Annu Rev Biophys Biomol Struct 30:457–475CrossRefPubMedGoogle Scholar
  6. 6.
    Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31, e82PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Reuss AJ, Vogel M, Weigand JE, Suess B, Wachtveitl J (2014) Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations. Biophys J 107:2962–2971CrossRefPubMedGoogle Scholar
  8. 8.
    Weigand JE, Schmidtke SR, Will TJ, Duchardt-Ferner E, Hammann C, Wohnert J, Suess B (2011) Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res 39:3363–3372PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Mizoue LS, Tellinghuisen J (2004) The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal Biochem 326:125–127CrossRefPubMedGoogle Scholar
  10. 10.
    Muller M, Weigand JE, Weichenrieder O, Suess B (2006) Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res 34:2607–2617PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Xiao H, Edwards TE, Ferre-D’Amare AR (2008) Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem Biol 15:1125–1137PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyTechnical University DarmstadtDarmstadtGermany

Personalised recommendations