Skip to main content

DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1380))

Abstract

Genetic alphabet expansion of DNA using unnatural base pair systems is expected to provide a wide variety of novel tools and methods. Recent rapid progress in this area has enabled the creation of several types of unnatural base pairs that function as a third base pair in polymerase reactions. Presently, a major topic is whether the genetic alphabet expansion system actually increases nucleic acid functionalities. We recently applied our unnatural base pair system to in vitro selection (SELEX), using a DNA library containing four natural bases and an unnatural base, and succeeded in the generation of high-affinity DNA aptamers that specifically bind to target proteins. Only a few hydrophobic unnatural bases greatly augmented the affinity of the aptamers. Here, we describe a new approach (genetic alphabet Expansion SELEX, ExSELEX), using our hydrophobic unnatural base pair system for high affinity DNA aptamer generation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  3. Kong HY, Byun J (2013) Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul) 21:423–434

    Article  Google Scholar 

  4. Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M, Shibamori M, Ishikawa Y, Jarvis TC, Carter JD, Zhang C, Gawande B, Vrkljan M, Janjic N, Schneider DJ (2014) Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 289:8706–8719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y, Yokoyama S (2006) An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat Methods 3:729–735

    Article  CAS  PubMed  Google Scholar 

  7. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40:2793–2806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yang Z, Chen F, Alvarado JB, Benner SA (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133:15105–15112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P, Torkamani A, Romesberg FE (2012) Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc Natl Acad Sci U S A 109:12005–12010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  12. Mitsui T, Kimoto M, Sato A, Yokoyama S, Hirao I (2003) An unnatural hydrophobic base, 4-propynylpyrrole-2-carbaldehyde, as an efficient pairing partner of 9-methylimidazo[(4,5)-b]pyridine. Bioorg Med Chem Lett 13:4515–4518

    Article  CAS  PubMed  Google Scholar 

  13. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  PubMed  Google Scholar 

  14. Mayer G, Hover T (2009) In vitro selection of ssDNA aptamers using biotinylated target proteins. Methods Mol Biol 535:19–32

    Article  CAS  PubMed  Google Scholar 

  15. Mosing RK, Bowser MT (2009) Isolating aptamers using capillary electrophoresis-SELEX (CE-SELEX). Methods Mol Biol 535:33–43

    Article  CAS  PubMed  Google Scholar 

  16. Navani NK, Mok WK, Yingfu L (2009) In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications. Methods Mol Biol 504:399–415

    Article  CAS  PubMed  Google Scholar 

  17. Chai C, Xie Z, Grotewold E (2011) SELEX (Systematic Evolution of Ligands by EXponential Enrichment), as a powerful tool for deciphering the protein-DNA interaction space. Methods Mol Biol 754:249–258

    Article  CAS  PubMed  Google Scholar 

  18. Ogawa N, Biggin MD (2012) High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro. Methods Mol Biol 786:51–63

    Article  CAS  PubMed  Google Scholar 

  19. Yamashige R, Kimoto M, Mitsui T, Yokoyama S, Hirao I (2011) Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system. Org Biomol Chem 9:7504–7509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hirao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kimoto, M., Matsunaga, Ki., Hirao, I. (2016). DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System. In: Mayer, G. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 1380. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3197-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3197-2_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3196-5

  • Online ISBN: 978-1-4939-3197-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics