Advertisement

Apta-PCR

  • Alessandro Pinto
  • Pedro Nadal Polo
  • Miriam Jauest Rubio
  • Marketa Svobodova
  • Teresa Mairal Lerga
  • Ciara K. O’Sullivan
Part of the Methods in Molecular Biology book series (MIMB, volume 1380)

Abstract

Real-time Apta-PCR is a methodology that can be used for a wide variety of applications ranging from food quality control to clinical diagnostics. This method takes advantage of the combination of the sensitivity of nucleic acid amplification with the selectivity of aptamers. Ultra-low detection of target analyte can potentially be achieved, or, improved detection limits can be achieved with aptamers of low-medium affinity. Herein, we describe a generic methodology coined real-time Apta-PCR, using a model target (β-conglutin) and a competitive format, which can be adapted for the detection of any target which an aptamer has been selected for.

Key words

Apta-PCR Aptamer Protein quantification 

References

  1. 1.
    Sano S, Smith CL, Cantor CR (1992) Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122CrossRefPubMedGoogle Scholar
  2. 2.
    Nam JM, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933CrossRefPubMedGoogle Scholar
  3. 3.
    Mweene AS, Ito T, Okazaki K, Ono E, Shimizu Y, Kida H (1996) Development of immuno-PCR for diagnosis of bovine herpesvirus 1 infection. J Clin Microbiol 34:748–750PubMedCentralPubMedGoogle Scholar
  4. 4.
    Niemeyer CM, Adler M, Wacker R (2005) Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol 23:208–216CrossRefPubMedGoogle Scholar
  5. 5.
    Adler M (2005) Immuno-PCR as a clinical laboratory tool. Adv Clin Chem 39:239–292CrossRefPubMedGoogle Scholar
  6. 6.
    McKie A, Samuel D, Cohen B, Saunders NA (2002) Development of a quantitative immuno-PCR assay and its use to detect mumps-specific IgG in serum. J Immunol Methods 261:167–175CrossRefPubMedGoogle Scholar
  7. 7.
    Niemeyer CM, Adler M, Pignataro B, Lenhert S, Gao S, Chi L et al (1999) Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res 27:4553–4561PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477CrossRefPubMedGoogle Scholar
  9. 9.
    Gustafsdottir SM, Schallmeiner E, Fredriksson S, Gullberg M, Söderberg O, Jarvius M et al (2005) Proximity ligation assays for sensitive and specific protein analyses. Anal Biochem 345:2–9CrossRefPubMedGoogle Scholar
  10. 10.
    Gustafsdottir SM, Nordengrahn A, Fredriksson S, Wallgren P, Rivera E, Schallmeiner E et al (2006) Detection of individual microbial pathogens by proximity ligation. Clin Chem 52:1152–1160CrossRefPubMedGoogle Scholar
  11. 11.
    Yang L, Fung CW, Eun JC, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329CrossRefPubMedGoogle Scholar
  12. 12.
    Yang L, Ellington AD (2008) Real-time PCR detection of protein analytes with conformation-switching aptamers. Anal Biochem 380:164–173PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wang XL, Li F, Su YH, Sun X, Li XB, Schluesener HJ et al (2004) Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Anal Chem 76:5605–5610CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H, Wang Z, Li XF, Le XC (2006) Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew Chem Int Ed Engl 45:1576–1580CrossRefPubMedGoogle Scholar
  15. 15.
    Fischer NO, Tarasow TM, Tok JBH (2008) Protein detection via direct enzymatic amplification of short DNA aptamers. Anal Biochem 373:121–128PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Pinto A, Bermudo Redondo MC, Ozalp VC, O’Sullivan CK (2009) Real-time apta-PCR for 20 000-fold improvement in detection limit. Mol BioSyst 5(5):548–553CrossRefPubMedGoogle Scholar
  17. 17.
    Pinto A, Lennarz S, Rodrigues-Correia A, Heckel A, O’Sullivan CK, Mayer G (2012) Functional detection of proteins by caged aptamers. ACS Chem Biol 7:359–365CrossRefGoogle Scholar
  18. 18.
    Svobodova M, Miairal T, Nadal P, Bermudo Redondo MC, O’Sullivan CK (2014) Ultrasensitive aptamer based detection of β-conglutin food allergen. Food Chem 165:419–423CrossRefPubMedGoogle Scholar
  19. 19.
    Pinto A, Nadal P, Henry O, Bermudo Redondo MC, Svobodova M, O’Sullivan CK (2014) Label-free detection of gliadin food allergen mediated by real-time apta PCR. Anal Bioanal Chem 406:515–524CrossRefPubMedGoogle Scholar
  20. 20.
    Svobodova M, Bunka D, Nadal P, Stockley PG, O’Sullivan CK (2013) Selection of 2’F-modified RNA aptamers against prostate-specific antigen and their evaluation for diagnostic and therapeutic applications. Anal Bioanal Chem 405:9149–9157CrossRefPubMedGoogle Scholar
  21. 21.
    Nadal P, Canela N, Katakis Y, O’Sullivan CK (2011) Extraction, isolation, and characterization of globulin proteins from Lupinus albus. J Agric Food Chem 59:2752–2758CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alessandro Pinto
    • 1
    • 2
  • Pedro Nadal Polo
    • 1
    • 3
  • Miriam Jauest Rubio
    • 1
  • Marketa Svobodova
    • 1
  • Teresa Mairal Lerga
    • 1
  • Ciara K. O’Sullivan
    • 1
    • 4
  1. 1.Department of Chemical EngineeringUniversitat Rovira I VirgiliTarragonaSpain
  2. 2.Department of BioengineeringRice UniversityHoustonUSA
  3. 3.Center for Omic Sciences (COS)Universitat Rovira I VirgiliReusSpain
  4. 4.Institució Catalana de Recerca I Estudis AvançatsBarcelonaSpain

Personalised recommendations