Skip to main content

In Vitro and In Vivo Imaging of Fluorescent Aptamers

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1380))

Abstract

Fluorescence imaging techniques could be used in different ways to study the interaction of aptamers with biological systems from cell culture to animal models. Here, we present the methods developed in our laboratory for fluorescently labeled aptamers, study their internalization inside living cells using time-lapse microscopy, and monitor their biodistribution in mice bearing subcutaneous xenograft tumors using planar fluorescence imaging and fluorescence diffuse optical tomography (fDOT).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pestourie C, Tavitian B, Duconge F (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87:921–930

    Article  CAS  PubMed  Google Scholar 

  2. Cibiel A, Pestourie C, Duconge F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606

    Article  CAS  PubMed  Google Scholar 

  3. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  4. Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276:16464–16468

    Article  CAS  PubMed  Google Scholar 

  6. Stanlis KK, McIntosh JR (2003) Single-strand DNA aptamers as probes for protein localization in cells. J Histochem Cytochem 51:797–808

    Article  CAS  PubMed  Google Scholar 

  7. Li W, Yang X, Wang K, Tan W, He Y, Guo Q, Tang H, Liu J (2008) Real-time imaging of protein internalization using aptamer conjugates. Anal Chem 80(13):5002–5008

    Article  CAS  PubMed  Google Scholar 

  8. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W (2008) Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14:1769–1775

    Article  CAS  PubMed  Google Scholar 

  9. Shi H, Tang Z, Kim Y, Nie H, Huang YF, He X, Deng K, Wang K, Tan W (2010) In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5:2209–2213

    Article  CAS  PubMed  Google Scholar 

  10. Zueva E, Rubio LI, Duconge F, Tavitian B (2010) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804

    Article  Google Scholar 

  11. Cibiel A, Dupont DM, Duconge F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235

    Article  PubMed Central  CAS  Google Scholar 

  12. Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci 108(10):3900–3905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shi H, Cui W, He X, Guo Q, Wang K, Ye X, Tang J (2013) Whole cell-SELEX aptamers for highly specific fluorescence molecular imaging of carcinomas in vivo. PLoS One 8, e70476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Cibiel A, Nguyen Quang N, Gombert K, Thézé B, Garofalakis A, Ducongé F (2014) From ugly duckling to swan: unexpected identification from cell-SELEX of an anti-annexin a2 aptamer targeting tumors. PLoS One 9, e87002

    Article  PubMed Central  PubMed  Google Scholar 

  15. Garofalakis A, Dubois A, Kuhnast B, Dupont DM, Janssens I, Mackiewicz N, Dolle F, Tavitian B, Duconge F (2010) In vivo validation of free-space fluorescence tomography using nuclear imaging. Opt Lett 35:3024–3026

    Article  CAS  PubMed  Google Scholar 

  16. Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Herve L, Koenig A, Da Silva A, Berger M, Boutet J, Dinten JM, Peltie P, Rizo P (2007) Noncontact fluorescence diffuse optical tomography of heterogeneous media. Appl Opt 46:4896–4906

    Article  CAS  PubMed  Google Scholar 

  18. Koenig A, Boutet J, Herve L, Berger M, Dinten JM, Da Silva A, Peltie P, Rizo P (2007) Fluorescence diffuse optical tomographic (fDOT) system for small animal studies. Conf Proc IEEE Eng Med Biol Soc 2007:2626–2629

    CAS  PubMed  Google Scholar 

  19. Heetebrij RJ, Talman EG, v Velzen MA, van Gijlswijk RP, Snoeijers SS, Schalk M, Wiegant J, v d Rijke F, Kerkhoven RM, Raap AK et al (2003) Platinum(II)-based coordination compounds as nucleic acid labeling reagents: synthesis, reactivity, and applications in hybridization assays. Chembiochem 4:573–583

    Article  CAS  PubMed  Google Scholar 

  20. Tataurov AV, You Y, Owczarzy R (2008) Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys Chem 133:66–70

    Article  CAS  PubMed  Google Scholar 

  21. Shigdar S, Qian C, Lv L, Pu C, Li Y, Li L, Marappan M, Lin J, Wang L, Duan W (2013) The use of sensitive chemical antibodies for diagnosis: detection of low levels of EpCAM in breast cancer. PLoS One 8, e57613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rasband WS (1997–2014) ImageJ, U. S. National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij/

    Google Scholar 

  23. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York, NY

    Book  Google Scholar 

  24. Dougherty R (2005) Extensions of DAMAS and benefits and limitations of deconvolution in beamforming. 11th AIAA/CEAS aeroacoustics conference. American Institute of Aeronautics and Astronautics, Monterey, CA. doi:10.2514/6.2005-2961.

    Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  26. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  27. Kamentsky L, Jones TR, Fraser A, Bray M-A, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for cell profiler: modular high-throughput image analysis software. Bioinformatics (Oxford) 27:1179–1180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Rui Sousa (University of Texas, San Antonio) for his generous gift of a T7Y639F RNA polymerase-expressing plasmid and to Carine Pestourie, Agnès Cibiel, Benoit Jego, Isabelle Janssens, Daniel Miotto Dupont, Anikitos Garofalakis, and Bertrand Tavitian for their work on aptamer imaging in our laboratory. Studies relating to in vivo imaging of aptamers in our laboratories were supported by grants from the “Agence Nationale pour la Recherche” [projects ANR-RNTS TomoFluo3D, ANR-PNANO nanorings and under the frame of EuroNanoMed (project META)]; the FMT -XCT European program [Grant agreement no. 201792]; and the European Molecular Imaging Laboratory (EMIL) network [EU contract LSH-2004-503569].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Ducongé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Théodorou, I., Quang, N.N., Gombert, K., Thézé, B., Lelandais, B., Ducongé, F. (2016). In Vitro and In Vivo Imaging of Fluorescent Aptamers. In: Mayer, G. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 1380. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3197-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3197-2_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3196-5

  • Online ISBN: 978-1-4939-3197-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics