Advertisement

1H NMR Metabolomic Footprinting Analysis for the In Vitro Screening of Potential Chemopreventive Agents

  • Luca CasadeiEmail author
  • Mariacristina ValerioEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1379)

Abstract

Metabolomics is the quantification and analysis of the concentration profiles of low-molecular-weight compounds present in biological samples. In particular metabolic footprinting analysis, based on the monitoring of metabolites consumed from and secreted into the growth medium, is a valuable tool for the study of pharmacological and toxicological effects of drugs. Mass spectrometry and nuclear magnetic resonance (NMR) are the two main complementary techniques used in this field. Although less sensitive, NMR gives a direct fingerprint of the system, and the spectra obtained contain metabolic information that can be distilled by chemometric techniques.

In this chapter, we present how metabolomic footprinting can be used to assess in vitro a potential chemopreventive molecule as metformin.

Key words

Chemoprevention Metabolomics Footprinting analysis NMR spectroscopy Principal component analysis Euclidean distance 

Notes

Acknowledgements

We thank Prof. Cesare Manetti, supervisor of NMR Laboratory of Chemistry Dpt., “Sapienza” University of Rome. We thank all the members of Dr. Giovanni Blandino’s and Dr. Sabrina Strano’s laboratories, Italian National Cancer Institute “Regina Elena,” Rome, Italy, for many years of collaboration in the metformin project. We are grateful to Dr. Alessandro Giuliani, Dpt. of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy, for his useful comments and suggestions on the data analysis.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96CrossRefPubMedGoogle Scholar
  3. 3.
    Sporn MB (1976) Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res 36:2699–2702PubMedGoogle Scholar
  4. 4.
    Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561CrossRefPubMedGoogle Scholar
  5. 5.
    Spratlin L, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Tiziani S, Kang Y, Choi JS et al (2011) Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat Commun 2:545–555CrossRefPubMedGoogle Scholar
  7. 7.
    Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565CrossRefPubMedGoogle Scholar
  8. 8.
    Allen J, Davey HM, Broadhurst D et al (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696CrossRefPubMedGoogle Scholar
  9. 9.
    Villas-Bôas SG, Højer-Pedersen J, Akesson M et al (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169CrossRefPubMedGoogle Scholar
  10. 10.
    Villas-Bôas SG, Noel S, Lane GA et al (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305CrossRefPubMedGoogle Scholar
  11. 11.
    Ludwig C, Günther UL (2011) MetaboLab - advanced NMR data processing and analysis for metabolomics. BMC Bioinform 12:366CrossRefGoogle Scholar
  12. 12.
    Thrippleton MJ, Edden RA, Keeler J (2005) Suppression of strong coupling artefacts in J-spectra. J Magn Reson 174:97–109CrossRefPubMedGoogle Scholar
  13. 13.
    Dieterle F, Ross A, Schlotterbeck G et al (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabolomics. Anal Chem 78:4281–4290CrossRefPubMedGoogle Scholar
  14. 14.
    Dieterle F, Riefke B, Schlotterbeck G et al (2011) NMR and MS methods for metabolomics. Methods Mol Biol 691:385–415CrossRefPubMedGoogle Scholar
  15. 15.
    Purohit PV, Rocke DM, Viant MR et al (2004) Discrimination models using variance-stabilizing transformation of metabolomic NMR data. OMICS 8:118–130CrossRefPubMedGoogle Scholar
  16. 16.
    Parsons HM, Ludwig C, Gunther UL et al (2007) Improved classification accuracy in 1-and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinform 8:234–250CrossRefGoogle Scholar
  17. 17.
    Blandino G, Valerio M, Cioce M et al (2012) Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 3:865–876CrossRefPubMedGoogle Scholar
  18. 18.
    Cioce M, Valerio M, Casadei L et al (2014) Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget 5:4129–4143PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Dieterle F, Ross A, Schlotterbeck G et al (2006) Metabolite projection analysis for fast identification of metabolites in metabonomics. Application in an amiodarone study. Anal Chem 78:3551–3561CrossRefPubMedGoogle Scholar
  20. 20.
    Davis RA, Charlton AJ, Godward J et al (2007) Adaptive binning: an improved binning method for metabolomics data using the undecimated wavelet transform. Chemometr Intell Lab 85:144–154CrossRefGoogle Scholar
  21. 21.
    De Meyer T, Sinnaeve D, Van Gasse B et al (2008) NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem 80:3783–3790CrossRefPubMedGoogle Scholar
  22. 22.
    Anderson PE, Mahle DA, Doom TE et al (2011) Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data. Metabolomics 7:179–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry“Sapienza” University of RomeRomeItaly

Personalised recommendations