Advertisement

LC-MS-Based Metabolomic Investigation of Chemopreventive Phytochemical-Elicited Metabolic Events

  • Lei Wang
  • Dan Yao
  • Chi ChenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1379)

Abstract

Phytochemicals are under intensive investigation for their potential use as chemopreventive agents in blocking or suppressing carcinogenesis. Metabolic interactions between phytochemical and biological system play an important role in determining the efficacy and toxicity of chemopreventive phytochemicals. However, complexities of phytochemical biotransformation and intermediary metabolism pose challenges for studying phytochemical-elicited metabolic events. Metabolomics has become a highly effective technical platform to detect subtle changes in a complex metabolic system. Here, using green tea polyphenols as an example, we describe a workflow of LC-MS-based metabolomics study, covering the procedures and techniques in sample collection, preparation, LC-MS analysis, data analysis, and interpretation.

Key words

Chemoprevention Phytochemical Metabolism Metabolomics LC-MS 

Notes

Acknowledgements

Research projects in Dr. Chi Chen’s lab are supported in part by an Agricultural Experiment Station project MIN-18-082 from the United States Department of Agriculture (USDA). We thank all the members in Dr. Chi Chen’s lab for their help in preparing this protocol.

References

  1. 1.
    Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300CrossRefPubMedGoogle Scholar
  2. 2.
    Chen C, Kong ANT (2005) Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 26(6):318–326CrossRefPubMedGoogle Scholar
  3. 3.
    Yang CS, Wang X, Lu G et al (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9(6):429–439PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Ahmad A, Sakr WA, Rahman KM (2010) Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy. Curr Drug Targets 11(6):652–666CrossRefPubMedGoogle Scholar
  5. 5.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMedGoogle Scholar
  7. 7.
    Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464CrossRefPubMedGoogle Scholar
  8. 8.
    Tan AC, Konczak I, Sze DM et al (2011) Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63(4):495–505CrossRefPubMedGoogle Scholar
  9. 9.
    Lee KW, Bode AM, Dong Z (2011) Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 11(3):211–218CrossRefPubMedGoogle Scholar
  10. 10.
    Urich-Merzenich G, Zeitler H, Jobst D et al (2007) Application of the “-omic-” technologies in phytomedicine. Phytomedicine 14(1):70–82CrossRefGoogle Scholar
  11. 11.
    Kersten RD, Dorrestein PC (2009) Secondary metabolomics: natural products mass spectrometry goes global. ACS Chem Biol 4(8):599–601CrossRefPubMedGoogle Scholar
  12. 12.
    Chen V, Staub RE, Baggett S et al (2012) Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle. PLoS One 7(1):e30107PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Chen C (2013) Emerging applications of metabolomics in studying chemopreventive phytochemicals. AAPS J 15(4):941–950PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Sugimoto M, Kawakami M, Robert M et al (2012) Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform 7(1):96–108PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Blekherman G, Laubenbacher R, Cortes DF et al (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7(3):329–343PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Villas-Boas SG, Mas S, Akesson M et al (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646CrossRefPubMedGoogle Scholar
  17. 17.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Food Science and NutritionUniversity of MinnesotaSt. PaulUSA

Personalised recommendations