Advertisement

The Methylated DNA Immunoprecipitation [MeDIP] to Investigate the Epigenetic Remodeling in Cell Fate Determination and Cancer Development

  • Silvia Masciarelli
  • Teresa Bellissimo
  • Ilaria Iosue
  • Francesco FaziEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1379)

Abstract

Epigenetic mechanisms such as DNA methylation, posttranslational modifications of histone proteins, remodeling of nucleosomes, and the expression of noncoding RNAs contribute to the regulation of gene expression for the cell fate determination and tissue development. The disruption of these epigenetic mechanisms, in conjunction with genetic alterations, is a decisive element for cancer development and progression. The cancer phenotype is characterized by global DNA hypomethylation and gene-specific hypermethylation. The methylated DNA immunoprecipitation [MeDIP] is a useful approach currently used to clarify the functional consequences of DNA methylation on cell fate determination and cancer development.

Key words

Epigenetic remodeling DNA methylation MeDIP 5-Methyl-cytosine CpG island Chromatin immunoprecipitation Cancer chemoprevention 

Notes

Acknowledgement

The work was supported by AIRC Start-up grant 4841.

References

  1. 1.
    Chen T, Dent SY (2014)‑ Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRefPubMedGoogle Scholar
  3. 3.
    Portela A, Liz J, Nogales V et al (2013) DNA methylation determines nucleosome occupancy in the 5′-CpG islands of tumor suppressor genes. Oncogene 32:5421–5428PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    De Carvalho DD, You JS, Jones PA (2010) DNA methylation and cellular reprogramming. Trends Cell Bio 20:609–617CrossRefGoogle Scholar
  5. 5.
    Brenner C, Fuks F (2006) DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 301:45–66PubMedGoogle Scholar
  6. 6.
    Chaligne R, Heard E (2014) X-chromosome inactivation in development and cancer. FEBS Lett 588:2514–2522CrossRefPubMedGoogle Scholar
  7. 7.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Easwaran H, Tsai HC, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54:716–727PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Taberlay PC, Jones PA (2011) DNA methylation and cancer. Prog Drug Res 67:1–23PubMedGoogle Scholar
  10. 10.
    Estecio MR, Issa JP (2011) Dissecting DNA hypermethylation in cancer. FEBS Lett 585:2078–2086PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11:726–734PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Figueroa ME, Lugthart S, Li Y et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Fazi F, Racanicchi S, Zardo G et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12:457–466CrossRefPubMedGoogle Scholar
  14. 14.
    Fazi F, Zardo G, Gelmetti V et al (2007) Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia. Blood 109:4432–4440CrossRefPubMedGoogle Scholar
  15. 15.
    Schoofs T, Muller-Tidow C (2011) DNA methylation as a pathogenic event and as a therapeutic target in AML. Cancer Treat Rev 37(Suppl 1):S13–S18CrossRefPubMedGoogle Scholar
  16. 16.
    Gerhauser C (2013) Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329:73–132CrossRefPubMedGoogle Scholar
  17. 17.
    Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203CrossRefPubMedGoogle Scholar
  18. 18.
    Reinders J, Paszkowski J (2010) Bisulfite methylation profiling of large genomes. Epigenomics 2:209–220CrossRefPubMedGoogle Scholar
  19. 19.
    Kristensen LS, Hansen LL (2009) PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin Chem 55:1471–1483CrossRefPubMedGoogle Scholar
  20. 20.
    Li LC (2007) Designing PCR primer for DNA methylation mapping. Methods Mol Biol 402:371–384PubMedGoogle Scholar
  21. 21.
    Sorensen AL, Collas P (2009) Immunoprecipitation of methylated DNA. Methods Mol Biol 567:249–262CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Silvia Masciarelli
    • 1
  • Teresa Bellissimo
    • 1
  • Ilaria Iosue
    • 1
  • Francesco Fazi
    • 1
    Email author
  1. 1.Section of Histology & Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic SciencesSapienza University of RomeRomeItaly

Personalised recommendations