Advertisement

Autophagy in Cancer Chemoprevention: Identification of Novel Autophagy Modulators with Anticancer Potential

  • Yuanzhi Lao
  • Naihan XuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1379)

Abstract

Cancer cells have the ability to tolerate extreme conditions, autophagy-related stress tolerance enables cancer cells to survive by maintaining energy production that leads to cell growth and therapeutic resistance. Insufficient activation of autophagy in nutrient-deprived cancer cells may sensitize cancer cells to a broad array of chemotherapeutic agents and ionizing radiation. Therefore, identification of novel autophagy modulators with lower toxicity and better therapeutic index would be beneficial for cancer therapy. Here, we describe several currently used biochemical methods to assess autophagic activity and lysosomal function in cultured cancer cells. We also discuss both in vitro and in vivo assays to clarify the anticancer potential of novel autophagy modulators.

Key words

Autophagy Lysosome Autophagosome Immunofluorescence Flow cytometry GFP-LC3 Cathepsin DQ-BSA Cell death Cancer Caloric restriction 

Notes

Acknowledgement

This work was supported by National Natural Science Foundation of China (NSFC) (21272135 and 81173485) and Overseas High-caliber Personnel Foundation of Shenzhen (KQC201109050084A).

References

  1. 1.
    Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109CrossRefPubMedGoogle Scholar
  2. 2.
    Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenfeldt MT, Ryan KM (2009) The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med 11:e36PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Mathew R, Karantza-Wadsworth V et al (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40CrossRefPubMedGoogle Scholar
  6. 6.
    Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777CrossRefPubMedGoogle Scholar
  7. 7.
    Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    White E (2007) Role of the metabolic stress responses of apoptosis and autophagy in tumor suppression. Ernst Schering Foundation symposium proceedings. p 23–34Google Scholar
  11. 11.
    Jin S, White E (2007) Role of autophagy in cancer: management of metabolic stress. Autophagy 3:28–31PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Karantza-Wadsworth V, Patel S, Kravchuk O et al (2007) Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev 21:1621–1635PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wu WK, Coffelt SB, Cho CH et al (2012) The autophagic paradox in cancer therapy. Oncogene 31:939–953CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou J, Hu SE, Tan SH et al (2012) Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 8:338–349CrossRefPubMedGoogle Scholar
  15. 15.
    Lao Y, Wan G, Liu Z et al (2014) The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation. Autophagy 10:736–749CrossRefPubMedGoogle Scholar
  16. 16.
    Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635CrossRefPubMedGoogle Scholar
  17. 17.
    Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–C742PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Vazquez CL, Colombo MI (2009) Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 452:85–95CrossRefPubMedGoogle Scholar
  19. 19.
    Repnik U, Stoka V, Turk V et al (2012) Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824:22–33CrossRefPubMedGoogle Scholar
  20. 20.
    Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897CrossRefPubMedGoogle Scholar
  21. 21.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477CrossRefPubMedGoogle Scholar
  22. 22.
    Bergamini E, Cavallini G, Donati A et al (2003) The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 57:203–208CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PharmacyShanghai University of Traditional Chinese MedicineShanghaiChina
  2. 2.Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations