Skip to main content

Abstract

The extraction of DNA from seeds is a very important step in every molecular study involving plant genetics. Seeds possesses many compounds that effectively interfere with DNA extraction and subsequently with downstream procedures. Despite the importance of this subject, little attention is given to improving and standardizing the current protocols. Thus, each study has to adapt and develop the best protocol modifications adjusted to its own specific requirements. After discussing several biotechnical difficulties and different solutions for each one, we propose a widely used protocol and diverse possibilities of protocol changes displayed in a diagram to ease every possible change and adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark MS (ed) (1997) Plant molecular biology: a laboratory manual. Springer, New York, pp 305–328

    Google Scholar 

  2. Fang G, Hammer S, Grumet R, Hammar S (1992) A quick and inexpensive method for removing polysaccharides from plant genomic DNA. Biotechniques 13(1):52–55

    CAS  PubMed  Google Scholar 

  3. Guillemaut P, Maréchal-Drouard L (1992) Isolation of plant DNA: a fast, inexpensive, and reliable method. Plant Mol Biol Rep 10(1):60–65

    Article  CAS  Google Scholar 

  4. Santos CD, Dias ACC, Amaral IMR, Bonetti AM, Campos TA (2013) New efficient DNA extraction method to access the microbiome of Ricinus communis seeds. Genet Mol Res 12(3):3128–3135

    PubMed  Google Scholar 

  5. Thomson D, Henry R (1995) Single-step protocol for preparation of plant tissue for analysis by PCR. Biotechniques 19(3):394–397, 400

    CAS  PubMed  Google Scholar 

  6. Amani J, Kazemi R, Abbasi AR, Salmanian AH (2011) A simple and rapid leaf genomic DNA extraction method for polymerase chain reaction analysis. Iran J Biotech 9(1):69–71

    CAS  Google Scholar 

  7. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus (Madison) 12:13–15

    Google Scholar 

  8. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Epicentre (2009) QuickExtract™ Seed DNA Extraction Solution. Lit. #292. 1. http://arb-ls.com/products/quickextract_seed_dna_extraction_solution/292pl039.pdf. Accessed 8 Jan 2014

  10. Sigma-Aldrich (2014) Extract-N-Amp Seed™ PCR Kits. http://www.sigmaaldrich.com/life-science/molecular-biology/dna-and-rna-purification/extractnamp-seed.html. Accessed 8 Jan 2014

  11. Manen J-F, Sinitsyna O, Aeschbach L, Markov AV, Sinitsyn A (2005) A fully automatable enzymatic method for DNA extraction from plant tissues. BMC Plant Biol 5:23

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ziegenhagen B, Guillemaut P, Scholz F (1993) A procedure for mini-preparations of genomic DNA from needles of silver fir (Abies alba Mill.). Plant Mol Biol Rep 11(2):117–121

    Article  CAS  Google Scholar 

  13. Zidani S, Ferchichi A, Chaieb M (2005) Genomic DNA extraction method from pearl millet (Pennisetum glaucum) leaves. Afr J Biotechnol 4(8):862–866

    CAS  Google Scholar 

  14. Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86(4):497–504

    Article  CAS  PubMed  Google Scholar 

  15. Huang Z, Boubriak I, Osborne DJ, Dong M, Gutterman Y (2008) Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Ann Bot 101(2):277–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ansari IA, Khan MS (2012) An efficient protocol for isolation of high quality genomic DNA from seeds of apple cultivars (Malus domestica) for random amplified polymorphic DNA (RAPD) analysis. Pharm Crop 3:78–83

    Article  Google Scholar 

  17. Kundu A, Sarkar D, Bhattacharjee A, Topdar N, Kumar Sinha M, Sinha Mahapatra B (2001) A simple ethanol wash of the tissue homogenates recovers high-quality genomic DNA from Corchorus species characterized by highly acidic and proteinaceous mucilages. Electron J Biotechnol 14(1)

    Google Scholar 

  18. Borse T, Joshi P, Chaphalkar S (2011) Biochemical role of ascorbic acid during the extraction of nucleic acids in polyphenol rich medicinal plant tissues. J Plant Mol Biol Biotechnol 2(2):1–7

    Google Scholar 

  19. Taiz L, Zeiger E (eds) (2006) Plant physiology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  20. Lehninger A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  21. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25(22):4692–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kulkarni M, Borse T, Chaphalkar S (2001) Isolation and purification of genomic DNA from black plum (Eugenia jambolana Lam.) for analytical applications. Int J Biotechnol Biochem 3:49–55

    Google Scholar 

  23. Zhang J-H, Wang F, Wang T-Y (2011) A simple and effective SuperBuffer for DNA agarose electrophoresis. Gene (Amst) 487(1):72–74

    Article  CAS  Google Scholar 

  24. Aljanabi SM, Forget L, Dookun A (1999) An improved rapid protocol for the isolation of polysaccharide and polyphenol-free sugarcane DNA. Plant Mol Biol Rep 17(3):281–288

    Article  Google Scholar 

  25. Hasan S, Prakash J, Vashishtha A et al (2012) Optimization of DNA extraction from seeds and leaf tissues of chrysanthemum (Chrysanthemum indicum) for polymerase chain reaction. Bioinformation 8(5):225–228

    Article  PubMed Central  PubMed  Google Scholar 

  26. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  27. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    Article  CAS  Google Scholar 

  28. Dawson CR, Magee RJ (1995) Plant tyrosinase (polyphenol oxidase). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 2. Academic Press, New York, pp 817–827

    Google Scholar 

  29. Puchooa D (2004) A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.). Afr J Biotechnol 3(4):253–255

    Article  CAS  Google Scholar 

  30. Rezaian MA, Krake LR (1987) Nucleic acid extraction and virus detection in grapevine. J Virol Methods 17(3-4):277–285

    Article  CAS  PubMed  Google Scholar 

  31. Busconi M, Foroni C, Corradi M, Bongiorni C, Cattapan F, Fogher C (2003) DNA extraction from olive oil and its use in the identification of the production cultivar. Food Chem 83(1):127–134

    Article  CAS  Google Scholar 

  32. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p 2028

    Google Scholar 

  33. Kejnovský E, Kypr J (1997) DNA extraction by zinc. Nucleic Acids Res 25(9):1870–1871

    Article  PubMed Central  PubMed  Google Scholar 

  34. BPI-Tech (2014) A versatile protocol for efficient DNA isolation from seeds. Seed DNA Isol Biopolym Isol Technol. 1–6. http://bpi-tech.com/images/Seed_DNA_Isolation_1.0.pdf. Accessed 8 Jan 2014

  35. Zymo-Research (2014) ZR-96 Plant/Seed DNA Kit™. Instr Man. 1–7. http://www.zymoresearch.com/downloads/dl/file/id/98/d6021i.pdf. Accessed 8 Jan 2014

  36. PowerMag™ Seed DNA Isolation Kit (Optimized for KingFisher®) (2014) Mo Bio Lab Inc. http://www.mobio.com/plant-dna-isolation/powermag-seed-dna-isolation-kit-optimized-for-kingfisher.html. Accessed 8 Jan 2014

  37. PowerPlant® Pro DNA Isolation (2014) Mo Bio Lab Inc. http://www.mobio.com/plant-dna-isolation/powerplant-pro-dna-isolation-kit.html. Accessed 8 Jan 2014

  38. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5(2):69–76

    Article  CAS  PubMed  Google Scholar 

  39. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Man A6:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célio Dias Santos Júnior B.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Júnior, C.D.S., Teles, N.M.M., Luiz, D.P., Isabel, T.F. (2016). DNA Extraction from Seeds. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics