Skip to main content

Two-Dimensional Crystallization of Gastric H+,K+-ATPase for Structural Analysis by Electron Crystallography

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

  • 3246 Accesses

Abstract

Electron crystallography of two-dimensional (2D) crystals has provided important information on the structural biology of P-type ATPases. Here, I describe the procedure for making 2D crystals of gastric H+,K+-ATPase purified from pig stomach. The 2D crystals are produced by dialyzing detergent-solubilized H+,K+-ATPase mixed with synthetic phospholipids. Removal of the detergent induces the reconstitution of H+,K+-ATPase molecules into the lipid bilayer. In the presence of fluorinated phosphate analogs, or in combination with transporting cations or the specific antagonist SCH28080, H+,K+-ATPase forms crystalline 2D arrays. The molecular conformation and morphology of the 2D crystals vary depending on the crystallizing conditions. Using these 2D crystals, three-dimensional structures of H+,K+-ATPase can be generated by data correction from ice-embedded 2D crystals using cryo-electron microscopy, followed by processing the recorded images using electron crystallography methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  PubMed  CAS  Google Scholar 

  2. Kyogoku Y, Fujiyoshi Y, Shimada I et al (2003) Structural genomics of membrane proteins. Acc Chem Res 36:199–206

    Article  PubMed  CAS  Google Scholar 

  3. Fujiyoshi Y (1998) The structural study of membrane proteins by electron crystallography. Adv Biophys 35:25–80

    Article  PubMed  CAS  Google Scholar 

  4. Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:467–471

    Article  PubMed  CAS  Google Scholar 

  5. Hebert H, Purhonen P, Vorum H et al (2001) Three-dimensional structure of renal Na, K-ATPase from cryo-electron microscopy of two-dimensional crystals. J Mol Biol 314:479–494

    Article  PubMed  CAS  Google Scholar 

  6. Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  7. Olesen C, Picard M, Winther AM et al (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  8. Toyoshima C, Norimatsu Y, Iwasawa S et al (2007) How processing of aspartylphosphate is coupled to luminal gating of the ion pathway in the calcium pump. Proc Natl Acad Sci U S A 104:19831–19836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Toyoshima C (2008) Structural aspects of ion pumping by Ca2+-ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11

    Article  PubMed  CAS  Google Scholar 

  10. Møller JV, Olesen C, Winther A-ML et al (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566

    Article  PubMed  Google Scholar 

  11. Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa H, Shinoda T, Cornelius F et al (2009) Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 106:13742–13747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Toyoshima C, Cornelius F (2013) New crystal structures of PII-type ATPases: excitement continues. Curr Opin Struct Biol 23:507–514

    Article  PubMed  CAS  Google Scholar 

  14. Abe K, Tani K, Nishizawa T et al (2009) Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle. EMBO J 28:1637–1643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Abe K, Tani K, Fujiyoshi Y (2011) Conformational rearrangement of gastric H+,K+-ATPase with an acid suppressant. Nat Commun 2:155

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abe K, Tani K, Friedrich T et al (2012) Cryo-EM structure of gastric H+,K+-ATPase with a single occupied cation-binding site. Proc Natl Acad Sci U S A 109:18401–18406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hiroaki Y, Tani K, Kamegawa A et al (2006) Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 355:628–639

    Article  PubMed  CAS  Google Scholar 

  18. Abe K, Tani K, Fujiyoshi Y (2010) Structural and functional characterization of H+,K+-ATPase with bound fluorinated phosphate analogs. J Struct Biol 170:60–68

    Article  PubMed  CAS  Google Scholar 

  19. Fan Y, Abe K, Tani K et al (2013) Carbon sandwich preparation preserves quality of two-dimensional crystals for cryo-electron microscopy. Microscopy 62:597–606

    Article  Google Scholar 

  20. Glaeser R, Downing K, Derosier D et al (2007) Electron crystallography of biological macromolecules. Oxford University Press, Oxford

    Google Scholar 

  21. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    Article  PubMed  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254

    Article  Google Scholar 

  23. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  PubMed  CAS  Google Scholar 

  24. Nishizawa T, Abe K, Tani K et al (2008) Structural analysis of 2D crystals of gastric H+,K+-ATPase in different states of the transport cycle. J Struct Biol 162:219–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Drs. Tomohiro Nishizawa, Kazutoshi Tani, and Yoshinori Fujiyoshi for their contributions to the development of the 2D H+,K+-ATPase crystallization procedure. This work was supported by Grants-in-Aid for Young Scientist (A) and Platform for Drug Design, Discovery, and Development from METI, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abe, K. (2016). Two-Dimensional Crystallization of Gastric H+,K+-ATPase for Structural Analysis by Electron Crystallography. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_39

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics