Skip to main content

Ratiometric Fluorescence Live Imaging Analysis of Membrane Lipid Order in Arabidopsis Mitotic Cells Using a Lipid Order-Sensitive Probe

  • Protocol
Plant Cell Division

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1370))

Abstract

Eukaryotic cells contain membranes exhibiting different levels of lipid order mostly related to their relative amount of sterol-rich domains, thought to mediate temporal and spatial organization of cellular processes. We previously provided evidence in Arabidopsis thaliana that sterols are crucial for execution of cytokinesis, the last stage of cell division. Recently, we used di-4-ANEPPDHQ, a fluorescent probe sensitive to order of lipid phases, to quantify the level of membrane order of the cell plate, the membrane structure separating daughter cells during somatic cytokinesis of higher plant cells. By employing quantitative, ratiometric fluorescence microscopy for mapping localized lipid order levels, we revealed that the Arabidopsis cell plate represents a high-lipid-order domain of the plasma membrane. Here, we describe step-by-step protocols and troubleshooting for ratiometric live imaging procedures employing the di-4-ANEPPDHQ fluorescent probe for quantification of membrane lipid order during plant cell division in suspension cell cultures and roots of Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Meer G (2005) Cellular lipidomics. EMBO J 24:3159–3165

    Article  PubMed Central  PubMed  Google Scholar 

  2. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  3. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  4. Liu P, Li RL, Zhang L et al (2009) Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant J 60:303–313

    Article  CAS  PubMed  Google Scholar 

  5. Takeshita N, Higashitsuji Y, Konzack S et al (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Grebe M, Xu J, Mobius W et al (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  CAS  PubMed  Google Scholar 

  7. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  8. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    Article  CAS  PubMed  Google Scholar 

  9. Recktenwald DJ, McConnell HM (1981) Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry 20:4505–4510

    Article  CAS  PubMed  Google Scholar 

  10. Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    Article  CAS  PubMed  Google Scholar 

  11. Silvius JR (2003) Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys J 85:1034–1045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  PubMed  Google Scholar 

  14. Sharma DK, Brown JC, Choudhury A et al (2004) Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 15:3114–3122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lillemeier BF, Pfeiffer JR, Surviladze Z et al (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A 103:18992–18997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230

    Article  CAS  PubMed  Google Scholar 

  17. Pinaud F, Michalet X, Iyer G et al (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10:691–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  20. Owen DM, Magenau A, Majumdar A et al (2010) Imaging membrane lipid order in whole, living vertebrate organisms. Biophys J 99:L7–L9

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rosetti CM, Maggio B, Wilke N (2010) Micron-scale phase segregation in lipid monolayers induced by myelin basic protein in the presence of a cholesterol analog. Biochim Biophys Acta 1798:498–505

    Article  CAS  PubMed  Google Scholar 

  22. Parasassi T, De Stasio G, d’Ubaldo A et al (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jin L, Millard AC, Wuskell JP et al (2006) Characterization and application of a new optical probe for membrane lipid domains. Biophys J 90:2563–2575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Parasassi T, Krasnowska EK, Bagatolli L et al (1998) Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–737

    Article  CAS  Google Scholar 

  25. Owen DM, Lanigan PM, Dunsby C et al (2006) Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells. Biophys J 90:L80–L82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Owen DM, Rentero C, Magenau A et al (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24–35

    Article  CAS  Google Scholar 

  27. Kwiatek JM, Owen DM, Abu-Siniyeh A et al (2013) Characterization of a new series of fluorescent probes for imaging membrane order. PLoS One 8:e52960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6 propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078

    Article  CAS  PubMed  Google Scholar 

  29. Kim HM, Choo HJ, Jung SY et al (2007) A two-photon fluorescent probe for lipid raft imaging: C-Laurdan. Chembiochem 8:553–559

    Article  CAS  PubMed  Google Scholar 

  30. Owen DM, Oddos S, Kumar S et al (2010) High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol Membr Biol 27:178–189

    Article  CAS  PubMed  Google Scholar 

  31. Jin L, Millard AC, Wuskell JP et al (2005) Cholesterol enriched lipid domains can be visualized by di-4-ANEPPDHQ with linear and nonlinear optics. Biophys J 89:L04–L06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gerbeau-Pissot P, Der C, Thomas D et al (2014) Modification of plasma membrane organization in tobacco cells elicited by cryptogein. Plant Physiol 164:273–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Frescatada-Rosa M, Stanislas T, Backues SK et al (2014) High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function. Plant J 80:745–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhao X, Ruili L, Cunfu L et al (2015) Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells. Plant Physiol Biochem 87:53–60

    Article  CAS  PubMed  Google Scholar 

  35. Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    Article  PubMed  Google Scholar 

  36. Barr FA, Grüneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131:847–860

    Article  CAS  PubMed  Google Scholar 

  37. Prekeris R, Gould GW (2008) Breaking up is hard to do – membrane traffic in cytokinesis. J Cell Sci 121:1569–1576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root. J Cell Biol 130:1345–1357

    Article  CAS  PubMed  Google Scholar 

  39. Stanislas T, Grebe M, Boutté Y (2014) Sterol dynamics during endocytic trafficking in Arabidopsis. Methods Mol Biol 1209:13–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on di-4-ANEPPDHQ-based detection of membrane order by M.G. and T.S. was supported by grants from the Carl Tryggers Foundation and to M.G. a grant from the Swedish Kempe Foundations. We thank the Centre de Microscopie INRA/Université de Bourgogne, UMR1347 Agroécologie, Plateforme DImaCell, BP 86510, F-21000 Dijon, France, where the experiments on the Arabidopsis cell suspension culture were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stanislas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gerbeau-Pissot, P., Der, C., Grebe, M., Stanislas, T. (2016). Ratiometric Fluorescence Live Imaging Analysis of Membrane Lipid Order in Arabidopsis Mitotic Cells Using a Lipid Order-Sensitive Probe. In: Caillaud, MC. (eds) Plant Cell Division. Methods in Molecular Biology, vol 1370. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3142-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3142-2_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3141-5

  • Online ISBN: 978-1-4939-3142-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics