Skip to main content

Characterization and Immunoregulatory Properties of Innate Pro-B-Cell Progenitors

  • Protocol
Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1371))

Abstract

Control of T-cell responses can be achieved by several subsets of B cells with immunoregulatory functions, mostly acting by provision of the anti-inflammatory cytokine IL-10 or exhibiting killing properties through Fas ligand (Fas-L) or granzyme B-induced cell death. We herein describe the characterization as well as the cellular and molecular mechanisms mediating the suppressive properties of bone marrow immature innate pro-B cell progenitors that emerge upon transient activation of Toll-like receptor 9. They are licensed by activated T-cell-derived IFN-γ to become suppressive by up-regulating their Fas-L expression and inducing effector CD4+ T-cell apoptosis. They also up-regulate their own IFN-γ production which dramatically reduces T-cell production of a major pathogenic cytokine, IL-21. A single adoptive transfer of as little as 60,000 of them efficiently prevents the onset of spontaneous type 1 diabetes in recipient nonobese diabetes (NOD) mice, highlighting the remarkable regulatory potency of these so-called CpG-proB cell progenitors compared to regulatory cells of diverse lineages so far described. The CpG-proB cell activity is prolonged in vivo by their differentiation after migration in the pancreas and the spleen into B-cell progeny with high Fas-L expression that can keep up inducing apoptosis of effector T cells in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF (2008) Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest 118(10):3420–3430

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5):639–650. doi:10.1016/j.immuni.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  3. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241. doi:10.1146/annurev-immunol-020711-074934

    Article  CAS  PubMed  Google Scholar 

  4. Chesneau M, Michel L, Degauque N, Brouard S (2013) Regulatory B cells and tolerance in transplantation: from animal models to human. Front Immunol 4:497. doi:10.3389/fimmu.2013.00497

    Article  PubMed Central  PubMed  Google Scholar 

  5. Hilgenberg E, Shen P, Dang VD, Ries S, Sakwa I, Fillatreau S (2014) Interleukin-10-producing B cells and the regulation of immunity. Curr Top Microbiol Immunol 380:69–92. doi:10.1007/978-3-662-43492-5_4

    PubMed  Google Scholar 

  6. Dang VD, Hilgenberg E, Ries S, Shen P, Fillatreau S (2014) From the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol 28:77–83. doi:10.1016/j.coi.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  7. Shen P, Lampropoulou V, Stervbo U, Hilgenberg E, Ries S, Mecqinion A, Fillatreau S (2013) Intrinsic Toll-like receptor signalling drives regulatory function in B cells. Front Biosci (Elite Ed) 5:78–86

    Google Scholar 

  8. Fillatreau S (2011) Novel regulatory functions for Toll-like receptor-activated B cells during intracellular bacterial infection. Immunol Rev 240(1):52–71. doi:10.1111/j.1600-065X.2010.00991.x

    Article  CAS  PubMed  Google Scholar 

  9. Tedder TF, Leonard WJ (2014) Autoimmunity: regulatory B cells – IL-35 and IL-21 regulate the regulators. Nat Rev Rheumatol 10(8):452–453. doi:10.1038/nrrheum.2014.95

    Article  CAS  PubMed  Google Scholar 

  10. Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR, Mauri C (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 178(12):7868–7878

    Article  CAS  PubMed  Google Scholar 

  11. Shen P, Roch T, Lampropoulou V, O'Connor RA, Stervbo U, Hilgenberg E, Ries S, Dang VD, Jaimes Y, Daridon C, Li R, Jouneau L, Boudinot P, Wilantri S, Sakwa I, Miyazaki Y, Leech MD, McPherson RC, Wirtz S, Neurath M, Hoehlig K, Meinl E, Grutzkau A, Grun JR, Horn K, Kuhl AA, Dorner T, Bar-Or A, Kaufmann SH, Anderton SM, Fillatreau S (2014) IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507(7492):366–370. doi:10.1038/nature12979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA, Steinhoff U, Anderton SM, Fillatreau S (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180(7):4763–4773

    Article  CAS  PubMed  Google Scholar 

  13. Rosser EC, Oleinika K, Tonon S, Doyle R, Bosma A, Carter NA, Harris KA, Jones SA, Klein N, Mauri C (2014) Regulatory B cells are induced by gut microbiota-driven interleukin-1beta and interleukin-6 production. Nat Med 20(11):1334–1339. doi:10.1038/nm.3680

    Article  CAS  PubMed  Google Scholar 

  14. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, Spolski R, Poe JC, Leonard WJ, Tedder TF (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491(7423):264–268. doi:10.1038/nature11501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A, Nutt SL, Sakaguchi S, Takeda K, Kurosaki T, Baba Y (2014) Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. doi:10.1016/j.immuni.2014.10.016

    PubMed  Google Scholar 

  16. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN (2007) B cell regulation of CD4 + CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 178(6):3447–3456

    Article  CAS  PubMed  Google Scholar 

  17. Massberg S, Schaerli P, Knezevic-Maramica I, Kollnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131(5):994–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24(6):801–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borghesi LA, Farrar MA, Kincade PW (2008) Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112(9):3753–3761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kared H, Adle-Biassette H, Fois E, Masson A, Bach JF, Chatenoud L, Schneider E, Zavala F (2006) Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling. Immunity 25(5):823–834

    Article  CAS  PubMed  Google Scholar 

  21. Kared H, Leforban B, Montandon R, Renand A, Layseca Espinosa E, Chatenoud L, Rosenstein Y, Schneider E, Dy M, Zavala F (2008) Role of GM-CSF in tolerance induction by mobilized hematopoietic progenitors. Blood 112(6):2575–2578

    Article  CAS  PubMed  Google Scholar 

  22. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, Bhandoola A, Artis D (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–1366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Montandon R, Korniotis S, Layseca-Espinosa E, Gras C, Megret J, Ezine S, Dy M, Zavala F (2013) Innate pro-B-cell progenitors protect against type 1 diabetes by regulating autoimmune effector T cells. Proc Natl Acad Sci U S A 110 (24):E2199–2208. doi:10.1073/pnas.1222446110

    Google Scholar 

  25. Spolski R, Kashyap M, Robinson C, Yu Z, Leonard WJ (2008) IL-21 signaling is critical for the development of type I diabetes in the NOD mouse. Proc Natl Acad Sci U S A 105(37):14028–14033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, Grusby MJ, von Herrath M (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58(5):1144–1155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. McGuire HM, Vogelzang A, Hill N, Flodstrom-Tullberg M, Sprent J, King C (2009) Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proc Natl Acad Sci U S A 106(46):19438–19443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McGuire HM, Walters S, Vogelzang A, Lee CM, Webster KE, Sprent J, Christ D, Grey S, King C (2011) Interleukin-21 is critically required in autoimmune and allogeneic responses to islet tissue in murine models. Diabetes 60(3):867–875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Asano K, Ikegami H, Fujisawa T, Nishino M, Nojima K, Kawabata Y, Noso S, Hiromine Y, Fukai A, Ogihara T (2007) Molecular scanning of interleukin-21 gene and genetic susceptibility to type 1 diabetes. Hum Immunol 68(5):384–391

    Article  CAS  PubMed  Google Scholar 

  30. Hahne M, Renno T, Schroeter M, Irmler M, French L, Bornard T, MacDonald HR, Tschopp J (1996) Activated B cells express functional Fas ligand. Eur J Immunol 26(3):721–724

    Article  CAS  PubMed  Google Scholar 

  31. Gray M, Miles K, Salter D, Gray D, Savill J (2007) Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci U S A 104(35):14080–14085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol 10(4):236–247. doi:10.1038/nri2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Morrison VL, Barr TA, Brown S, Gray D (2010) TLR-mediated loss of CD62L focuses B cell traffic to the spleen during Salmonella typhimurium infection. J Immunol 185(5):2737–2746. doi:10.4049/jimmunol.1000758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, Johnson LL, Swain SL, Lund FE (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1(6):475–482. doi:10.1038/82717

    Article  CAS  PubMed  Google Scholar 

  35. Bao Y, Liu X, Han C, Xu S, Xie B, Zhang Q, Gu Y, Hou J, Qian L, Qian C, Han H, Cao X (2014) Identification of IFN-gamma-producing innate B cells. Cell Res 24(2):161–176. doi:10.1038/cr.2013.155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A, Kaufman DL (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J Immunol 167(2):1081–1089

    Article  CAS  PubMed  Google Scholar 

  37. Lundy SK, Boros DL (2002) Fas ligand-expressing B-1a lymphocytes mediate CD4(+)-T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10. Infect Immun 70(2):812–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lundy SK, Lerman SP, Boros DL (2001) Soluble egg antigen-stimulated T helper lymphocyte apoptosis and evidence for cell death mediated by FasL(+) T and B cells during murine Schistosoma mansoni infection. Infect Immun 69(1):271–280. doi:10.1128/IAI.69.1.271-280.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Klinker MW, Lizzio V, Reed TJ, Fox DA, Lundy SK (2014) Human B cell-derived lymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer exosomes. Front Immunol 5:144. doi:10.3389/fimmu.2014.00144

    Article  PubMed Central  PubMed  Google Scholar 

  40. Lundy SK (2009) Killer B lymphocytes: the evidence and the potential. Inflamm Res 58(7):345–357. doi:10.1007/s00011-009-0014-x

    Article  CAS  PubMed  Google Scholar 

  41. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R, Lunov O, Nienhaus GU, Simmet T, Kreienberg R, Moller P, Schrezenmeier H, Jahrsdorfer B (2013) Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73(8):2468–2479. doi:10.1158/0008-5472.CAN-12-3450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Christophe Gras for technical assistance and thank Jérôme Mégret for expert cell-sorting. This work was supported by institutional grants from Centre National de la Recherche Scientifique and Institut National de la Recherche Médicale, and by grants from Humanis, IKY (State Scholarship Foundation, Greece), Juvenile Diabetes Research Foundation, Fondation de la Recherche Médicale Prix Mescle and Association Française pour la Recherche sur la Sclérose en Plaques (ARSEP). R.M. was recipient of a doctoral grant from the Ministry of Education and Research, France, and subsequently from Ligue Nationale Française contre le Cancer. S.K. was supported by a grant from Domaine d’Intérêt Majeur StemPôle, Région Ile de France and subsequently from Association Française pour la Recherche sur la Sclérose en Plaques (ARSEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Zavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zavala, F., Korniotis, S., Montandon, R. (2016). Characterization and Immunoregulatory Properties of Innate Pro-B-Cell Progenitors. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 1371. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3139-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3139-2_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3138-5

  • Online ISBN: 978-1-4939-3139-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics