Standardized Multi-Color Flow Cytometry and Computational Biomarker Discovery

  • Stephan Schlickeiser
  • Mathias Streitz
  • Birgit Sawitzki
Part of the Methods in Molecular Biology book series (MIMB, volume 1371)

Abstract

Multi-color flow cytometry has become a valuable and highly informative tool for diagnosis and therapeutic monitoring of patients with immune deficiencies or inflammatory disorders. However, the method complexity and error-prone conventional manual data analysis often result in a high variability between different analysts and research laboratories. Here, we provide strategies and guidelines aiming at a more standardized multi-color flow cytometric staining and unsupervised data analysis for whole blood patient samples.

Key words

Flow cytometry Immune monitoring Standardization Data analysis 

References

  1. 1.
    Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, Schlickeiser S, Kverneland AH, Meisel C, Volk HD, Sawitzki B (2013) Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res 2:17. doi:10.1186/2047-1440-1182-1117 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Agarwal S, Busse PJ (2010) Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol 104:183–190, quiz 190–182CrossRefPubMedGoogle Scholar
  3. 3.
    Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30:16–22, doi: 10.3109/09513590.09512013.09852531. Epub 09512013 Nov 09513512CrossRefPubMedGoogle Scholar
  4. 4.
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–S9. doi:10.1093/gerona/glu1057 CrossRefPubMedGoogle Scholar
  5. 5.
    Goto M (2008) Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends 2:218–230PubMedGoogle Scholar
  6. 6.
    Jenny NS (2012) Inflammation in aging: cause, effect, or both? Discov Med 13:451–460PubMedGoogle Scholar
  7. 7.
    Larbi A, Fulop T (2014) From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35, doi: 10.1002/cyto.a.22351. Epub 22013 Sep 22330CrossRefPubMedGoogle Scholar
  8. 8.
    Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7:681–685CrossRefPubMedGoogle Scholar
  9. 9.
    Maecker HT, McCoy JP Jr, Consortium FHI, Amos M, Elliott J, Gaigalas A, Wang L, Aranda R, Banchereau J, Boshoff C, Braun J, Korin Y, Reed E, Cho J, Hafler D, Davis M, Fathman CG, Robinson W, Denny T, Weinhold K, Desai B, Diamond B, Gregersen P, Di Meglio P, Nestle FO, Peakman M, Villanova F, Ferbas J, Field E, Kantor A, Kawabata T, Komocsar W, Lotze M, Nepom J, Ochs H, O’Lone R, Phippard D, Plevy S, Rich S, Roederer M, Rotrosen D, Yeh JH (2010) A model for harmonizing flow cytometry in clinical trials. Nat Immunol 11:975–978PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Maecker HT, McCoy JP, Nussenblatt R (2012) Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12:191–200, doi: 110.1038/nri3158PubMedCentralPubMedGoogle Scholar
  11. 11.
    Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69:1037–1042CrossRefPubMedGoogle Scholar
  12. 12.
    R_Core_Team_(2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  13. 13.
    Le Meur N (2013) Computational methods for evaluation of cell-based data assessment – bioconductor. Curr Opin Biotechnol 24:105–111CrossRefPubMedGoogle Scholar
  14. 14.
    Reimers M, Carey VJ (2006) Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol 411:119–134CrossRefPubMedGoogle Scholar
  15. 15.
    Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, Hayes P, Birungi J, Anzala O, Garcia M, Harari A, Frank I, Baydo R, Baker M, Holbrook J, Ottinger J, Lamoreaux L, Epling CL, Sinclair E, Suni MA, Punt K, Calarota S, El-Bahi S, Alter G, Maila H, Kuta E, Cox J, Gray C, Altfeld M, Nougarede N, Boyer J, Tussey L, Tobery T, Bredt B, Roederer M, Koup R, Maino VC, Weinhold K, Pantaleo G, Gilmour J, Horton H, Sekaly RP (2005) Standardization of cytokine flow cytometry assays. BMC Immunol 6:13PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, Schlickeiser S, Kverneland AH, Meisel C, Volk HD, Sawitzki B (2013) Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res 2:17PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH (2013) Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10:228–238PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Spidlen J, Barsky A, Breuer K, Carr P, Nazaire MD, Hill BA, Qian Y, Liefeld T, Reich M, Mesirov JP, Wilkinson P, Scheuermann RH, Sekaly RP, Brinkman RR (2013) GenePattern flow cytometry suite. Source Code Biol Med 8:14PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10: Unit10 17Google Scholar
  20. 20.
    Amirel AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552CrossRefGoogle Scholar
  21. 21.
    Aghaeepour N, Chattopadhyay PK, Ganesan A, O’Neill K, Zare H, Jalali A, Hoos HH, Roederer M, Brinkman RR (2012) Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28:1009–1016PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Bashashati A, Johnson NA, Khodabakhshi AH, Whiteside MD, Zare H, Scott DW, Lo K, Gottardo R, Brinkman FS, Connors JM, Slack GW, Gascoyne RD, Weng AP, Brinkman RR (2012) B cells with high side scatter parameter by flow cytometry correlate with inferior survival in diffuse large B-cell lymphoma. Am J Clin Pathol 137:805–814PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Zare H, Bashashati A, Kridel R, Aghaeepour N, Haffari G, Connors JM, Gascoyne RD, Gupta A, Brinkman RR, Weng AP (2012) Automated analysis of multidimensional flow cytometry data improves diagnostic accuracy between mantle cell lymphoma and small lymphocytic lymphoma. Am J Clin Pathol 137:75–85PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Qiu P (2012) Inferring phenotypic properties from single-cell characteristics. PLoS One 7:e37038PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Craig FE, Brinkman RR, Ten Eyck S, Aghaeepour N (2014) Computational analysis optimizes the flow cytometric evaluation for lymphoma. Cytometry B Clin Cytom 86:18–24CrossRefPubMedGoogle Scholar
  26. 26.
    Fiser K, Sieger T, Schumich A, Wood B, Irving J, Mejstrikova E, Dworzak MN (2012) Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry A 81:25–34CrossRefPubMedGoogle Scholar
  27. 27.
    Zare H, Shooshtari P, Gupta A, Brinkman RR (2010) Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11:403PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Dundar M, Akova F, Yerebakan HZ, Rajwa B (2014) A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 15:314PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, Welters MJ, van der Burg SH, West M, Chan C (2013) Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol 9:e1003130PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, Sharma G (2014) SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation. Cytometry A 85:422–433PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Hahne F, Khodabakhshi AH, Bashashati A, Wong CJ, Gascoyne RD, Weng AP, Seyfert-Margolis V, Bourcier K, Asare A, Lumley T, Gentleman R, Brinkman RR (2010) Per-channel basis normalization methods for flow cytometry data. Cytometry A 77:121–131PubMedCentralPubMedGoogle Scholar
  33. 33.
    Aghaeepour N, Jalali A, O’Neill K, Chattopadhyay PK, Roederer M, Hoos HH, Brinkman RR (2012) RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 81:1022–1030PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Streitz M, Fuhrmann S, Thomas D, Cheek E, Nomura L, Maecker H, Martus P, Aghaeepour N, Brinkman RR, Volk HD, Kern F (2012) The phenotypic distribution and functional profile of tuberculin-specific CD4 T-cells characterizes different stages of TB infection. Cytometry B Clin Cytom 82:360–368CrossRefPubMedGoogle Scholar
  35. 35.
    Zare H, Haffari G, Gupta A, Brinkman RR (2013) Scoring relevancy of features based on combinatorial analysis of Lasso with application to lymphoma diagnosis. BMC Genomics 14(Suppl 1):S14PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Mehta T, Tanik M, Allison DB (2004) Towards sound epistemological foundations of statistical methods for high-dimensional biology. Nat Genet 36:943–947CrossRefPubMedGoogle Scholar
  37. 37.
    Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R (2009) flowCore: a bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Sarkar D, Le Meur N, Gentleman R (2008) Using flowViz to visualize flow cytometry data. Bioinformatics 24:878–879PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Le Meur N, Rossini A, Gasparetto M, Smith C, Brinkman RR, Gentleman R (2007) Data quality assessment of ungated flow cytometry data in high throughput experiments. Cytometry A 71:393–403PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Finak G, Jiang W, Pardo J, Asare A, Gottardo R (2012) QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinformatics 13:252PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Roederer M, Treister A, Moore W, Herzenberg LA (2001) Probability binning comparison: a metric for quantitating univariate distribution differences. Cytometry 45:37–46CrossRefPubMedGoogle Scholar
  42. 42.
    Rogers WT, Holyst HA. FlowFP: A Bioconductor Package for Fingerprinting Flow Cytometric Data. Adv Bioinformatics. 2009:193947. doi:10.1155/2009/193947. Epub 2009 Sep 24. PubMed PMID: 19956416; PubMed Central PMCID: PMC2777013.
  43. 43.
    Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R, Brinkman RR. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics. 2015 Feb 15;31(4):606–7. doi: 10.1093/bioinformatics/btu677. Epub 2014 Oct 16. PubMed PMID: 25378466; PubMed Central PMCID: PMC4325545.
  44. 44.
    Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR (2011) Rapid cell population identification in flow cytometry data. Cytometry A 79:6–13PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Ray S, Pyne S (2012) A computational framework to emulate the human perspective in flow cytometric data analysis. PLoS One 7:e35693PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17:977–987CrossRefPubMedGoogle Scholar
  47. 47.
    Lo K, Hahne F, Brinkman RR, Gottardo R (2009) flowClust: a bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics 10:145PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinformatics. 2009:247646. doi: 10.1155/2009/247646. Epub 2009 Nov 12. PubMed PMID: 20049161; PubMed Central PMCID: PMC2798116.
  49. 49.
    Ge Y, Sealfon SC (2012) flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28:2052–2058PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Azad A, Pyne S, Pothen A (2012) Matching phosphorylation response patterns of antigen-receptor-stimulated T cells via flow cytometry. BMC Bioinformatics 13(Suppl 2):S10PubMedCentralPubMedGoogle Scholar
  51. 51.
    Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, Kalams SA, De Rosa SC, Gottardo R (2014) OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 10:e1003806PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    O’Neill K, Jalali A, Aghaeepour N, Hoos H, Brinkman RR (2014) Enhanced flowType/RchyOptimyx: a bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 30:1329–1330PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stephan Schlickeiser
    • 1
  • Mathias Streitz
    • 1
  • Birgit Sawitzki
    • 1
  1. 1.Institute of Medical ImmunologyCharité University MedicineBerlinGermany

Personalised recommendations