Skip to main content

Analyzing Illumina Gene Expression Microarray Data Obtained From Human Whole Blood Cell and Blood Monocyte Samples

  • Protocol
Microarray Technology

Abstract

Microarray profiling of gene expression is widely applied to studies in molecular biology and functional genomics. Experimental and technical variations make not only the statistical analysis of single studies but also meta-analyses of different studies very challenging. Here, we describe the analytical steps required to substantially reduce the variations of gene expression data without affecting true effect sizes. A software pipeline has been established using gene expression data from a total of 3358 whole blood cell and blood monocyte samples, all from three German population-based cohorts, measured on the Illumina HumanHT-12 v3 BeadChip array. In summary, adjustment for a few selected technical factors greatly improved reliability of gene expression analyses. Such adjustments are particularly required for meta-analyses of different studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramasamy A, Mondry A, Holmes CC et al (2008) Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med 5:e184

    Article  PubMed Central  PubMed  Google Scholar 

  2. Heinig M, Petretto E, Wallace C et al (2010) A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467:460–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ein-Dor L, Kela I, Getz G et al (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178

    Article  CAS  PubMed  Google Scholar 

  4. Ntzani EE, Ioannidis JPA (2003) Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362:1439–1444

    Article  CAS  PubMed  Google Scholar 

  5. Eysenck HJ (1994) Meta-analysis and its problems. BMJ 309:789–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Campain A, Yang YH (2010) Comparison study of microarray meta-analysis methods. BMC Bioinformatics 11:408

    Article  PubMed Central  PubMed  Google Scholar 

  7. Repsilber D, Fink L, Jacobsen M et al (2005) Sample selection for microarray gene expression studies. Methods Inf Med 44:461–467

    CAS  PubMed  Google Scholar 

  8. Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24:1547–1548

    Article  CAS  PubMed  Google Scholar 

  9. Lin SM, Du P, Huber W et al (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36:e11

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fu J, Wolfs MGM, Deelen P et al (2012) Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet 8:e1002431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fehrmann RSN, Jansen RC, Veldink JH et al (2011) Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 7:e1002197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Völzke H, Alte D, Schmidt CO et al (2011) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40:294–307

    Article  PubMed  Google Scholar 

  13. Holle R, Happich M, Löwel H et al (2005) KORA–a research platform for population based health research. Gesundheitswesen 67(Suppl 1):S19–S25

    Article  PubMed  Google Scholar 

  14. Zeller T, Wild P, Szymczak S et al (2010) Genetics and beyond–the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5:e10693

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schurmann C, Heim K, Schillert A et al (2012) Analyzing Illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the MetaXpress consortium. PLoS ONE 7:e50938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org. ISBN 3-900051-07-0

  17. Smith ML, Baggerly KA, Bengtsson H et al. (2013) illuminaio: an open source idat parsing tool for Illumina microarrays. F1000Research 2

    Google Scholar 

  18. Dunning MJ, Smith ML, Ritchie ME et al (2007) beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23:2183–2184

    Article  CAS  PubMed  Google Scholar 

  19. Du P, Kibbe WA, Lin SM (2007) nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays. Biol Direct 2: 16

    Google Scholar 

  20. Chen LS, Storey JD (2008) Eigen-r2 for dissecting variation in high-dimensional studies. Bioinformatics 24:2260–2262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Westra HJ, Peters MJ, Esko T et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45:1238–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Commission’s Seventh Framework Programme (FP7/2007-2013, HEALTH-F2-2011, grant agreement No. 277984, TIRCON), the BMBF (German Ministry of Education and Research) grants 03IS2061A, 03ZIK012, 01GS0834, 01GS0833, 01GS0831, 01KU0908A, 01KU0908B, 0315536F, and the National Genome Research Network NGFNplus Atherogenomics, the Federal State of Mecklenburg-West Pomerania, the Caché Campus program of the InterSystems GmbH, the Helmholtz Zentrum München (German Research Center for Environmental Health), the State of Bavaria, the German Center for Diabetes Research (DZD e.V.), the State of North-Rhine-Westphalia, the Leibniz Association (WGL Pakt für Forschung und Innovation), the government of Rheinland-Pfalz (“Stiftung Rheinland Pfalz für Innovation”, contract AZ 961–386261/733), the Johannes Gutenberg-University of Mainz, and its contract with Boehringer Ingelheim and PHILIPS Medical Systems, the Agence Nationale de la Recherche, France (contract ANR 09 GENO 106 01), the European Union (HEALTH-2011-278913), and the DZHK (German Centre for Cardiovascular Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Teumer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Teumer, A., Schurmann, C., Schillert, A., Schramm, K., Ziegler, A., Prokisch, H. (2016). Analyzing Illumina Gene Expression Microarray Data Obtained From Human Whole Blood Cell and Blood Monocyte Samples. In: Li, P., Sedighi, A., Wang, L. (eds) Microarray Technology. Methods in Molecular Biology, vol 1368. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3136-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3136-1_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3135-4

  • Online ISBN: 978-1-4939-3136-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics