Skip to main content

Surface Functionalization for Immobilization of Probes on Microarrays

  • Protocol
Microarray Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1368))

Abstract

The microarray technology has been a tremendous advance in molecular-based testing methods for biochemical and biomedical applications. As a result, the immobilization techniques and grafting chemistries of biochemical molecules have experienced great progress. The particularities of the grafting techniques adapted to the microarray development will be presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbulovic-Nad I, Lucente M, Sun Y et al (2006) Bio-microarray fabrication techniques – a review. Crit Rev Biotechnol 26(4):237–259

    Article  CAS  PubMed  Google Scholar 

  2. Xia Y, Whitesides GM (1998) Soft lithography. Angewandte Chemie 37(5):550–575

    Article  CAS  Google Scholar 

  3. Marquette CA, Corgier BP, Heyries KA et al (2008) Biochips: non-conventional strategies for biosensing elements immobilization. Front Biosci 13(1):382–400

    Article  CAS  PubMed  Google Scholar 

  4. Piner RD, Zhu J, Xu F et al (1999) ‘Dip-pen’ nanolithography. Science 283(5402):661–663

    Article  CAS  PubMed  Google Scholar 

  5. Ginger DS, Zhang H, Mirkin CA (2004) The evolution of Dip-Pen nanolithography. Angewandte Chemie 43(1):30–45

    Article  PubMed  Google Scholar 

  6. Avseenko NV, Morozova TY, Ataullakhanov FI et al (2001) Immobilization of proteins in immunochemical microarrays fabricated by electrospray deposition. Anal Chem 73(24):6047–6052

    Article  CAS  PubMed  Google Scholar 

  7. Nolan JP, Sklar LA (2002) Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol 20(1):9–12

    Article  CAS  PubMed  Google Scholar 

  8. Sha MY, Walton ID, Norton SM et al (2006) Multiplexed SNP genotyping using nanobarcode particle technology. Anal Bioanal Chem 384(3):658–666

    Article  CAS  PubMed  Google Scholar 

  9. Marquette CA, Blum LJ (2004) Direct immobilization in poly(dimethylsiloxane) for DNA, protein and enzyme fluidic biochips. Anal Chim Acta 506(2):127–132

    Article  CAS  Google Scholar 

  10. Epstein JR, Lee M, Walt DR (2002) High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. Anal Chem 74(8):1836–1840

    Article  CAS  PubMed  Google Scholar 

  11. Epstein JR, Ferguson JA, Lee KH et al (2003) Combinatorial decoding: an approach for universal DNA array fabrication. J Am Chem Soc 125(45):13753–13759

    Article  CAS  PubMed  Google Scholar 

  12. Yu X, Xia HS, Sun ZD et al (2013) On-chip dual detection of cancer biomarkers directly in serum based on self-assembled magnetic bead patterns and quantum dots. Biosens Bioelectron 41(1):129–136

    Article  CAS  PubMed  Google Scholar 

  13. Piletsky S, Piletska E, Bossi A et al (2003) Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. Biotechnol Bioeng 82(1):86–92

    Article  CAS  PubMed  Google Scholar 

  14. Cretich M, Breda D, Damin F et al (2010) Allergen microarrays on high-sensitivity silicon slides. Anal Bioanal Chem 398(4):1723–1733

    Article  CAS  PubMed  Google Scholar 

  15. Charles PT, Goldman ER, Rangasammy JG et al (2004) Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor applications. Biosens Bioelectron 20(4):753–764

    Article  CAS  PubMed  Google Scholar 

  16. Amine A, Mohammadi H, Bourais I et al (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  PubMed  Google Scholar 

  17. Shi M, Peng Y, Zhou J et al (2006) Immunoassays based on microelectrodes arrayed on a silicon chip for high throughput screening of liver fibrosis markers in human serum. Biosens Bioelectron 21(12):2210–2216

    Article  CAS  PubMed  Google Scholar 

  18. Marquette CA, Imbert-Laurenceau E, Mallet F et al (2005) Electroaddressed immobilization of recombinant HIV-1 P24 capsid protein onto screen-printed arrays for serological testing. Anal Biochem 340(1):14–23

    Article  CAS  PubMed  Google Scholar 

  19. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789

    Article  CAS  PubMed  Google Scholar 

  20. Andersson H, Jönsson C, Moberg C et al (2002) Self-assembled and self-sorted array of chemically active beads for analytical and biochemical screening. Talanta 56(2):301–308

    Article  CAS  PubMed  Google Scholar 

  21. Andreescu S, Njagi J, Ispas C et al (2009) JEM spotlight: applications of advanced nanomaterials for environmental monitoring. J Environ Monit 11(1):27–40

    Article  CAS  PubMed  Google Scholar 

  22. Peijia TY, Xu N, Lu W, Xiao SJ, Liu JN (2011) Covalently derivatized NTA microarrays on porous silicon for multi-mode detection of His-tagged proteins. Sci China Chem 54(3):526–535

    Article  Google Scholar 

  23. Wacker R, Niemeyer CM (2004) DDI-μFIA – a readily configurable microarray-fluorescence immunoassay based on DNA-directed immobilization of proteins. ChemBioChem 5(4):453–459

    Article  CAS  PubMed  Google Scholar 

  24. Johnson CP, Jensen IE, Prakasam A et al (2003) Engineered protein A for the orientational control of immobilized proteins. Bioconjug Chem 14(5):974–978

    Article  CAS  PubMed  Google Scholar 

  25. Jonkheijm P, Weinrich D, Schröder H et al (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47(50):9618–9647

    Article  CAS  Google Scholar 

  26. Patel N, Davies MC, Hartshorne M et al (1997) Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13(24):6485–6490

    Article  CAS  Google Scholar 

  27. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763

    CAS  PubMed  Google Scholar 

  28. Fernandez-Lafuente R, Rosell CM, Rodriguez V et al (1993) Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzym Microb Technol 15(7):546–550

    Article  CAS  Google Scholar 

  29. Blawas AS, Reichert WM (1998) Protein patterning. Biomaterials 19(7-9):595–609

    Article  CAS  PubMed  Google Scholar 

  30. Duckworth BP, Xu J, Taton TA et al (2006) Site-specific, covalent attachment of proteins to a solid surface. Bioconjug Chem 17(4):967–974

    Article  CAS  PubMed  Google Scholar 

  31. Govindaraju T, Jonkheijm P, Gogolin L et al (2008) Surface immobilization of biomolecules by click sulfonamide reaction. Chem Commun 32:3723–3725

    Article  Google Scholar 

  32. Houseman BT, Huh JH, Kron SJ et al (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 20(3):270–274

    Article  CAS  PubMed  Google Scholar 

  33. Corgier BP, Marquette CA, Blum LJ (2005) Diazonium-protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. J Am Chem Soc 127(51):18328–18332

    Article  CAS  PubMed  Google Scholar 

  34. Falsey JR, Renil M, Park S et al (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12(3):346–353

    Article  CAS  PubMed  Google Scholar 

  35. Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460):2007–2010

    Article  CAS  PubMed  Google Scholar 

  36. Nilsson BL, Kiessling LL, Raines RT (2000) Staudinger ligation: a peptide from a thioester and azide. Org Lett 2(13):1939–1941

    Article  CAS  PubMed  Google Scholar 

  37. Soellner MB, Dickson KA, Nilsson BL et al (2003) Site-specific protein immobilization by Staudinger ligation. J Am Chem Soc 125(39):11790–11791

    Article  CAS  PubMed  Google Scholar 

  38. Köhn M, Wacker R, Peters C et al (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angewandte Chemie 42(47):5830–5834

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Marquette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Desmet, C., Marquette, C.A. (2016). Surface Functionalization for Immobilization of Probes on Microarrays. In: Li, P., Sedighi, A., Wang, L. (eds) Microarray Technology. Methods in Molecular Biology, vol 1368. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3136-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3136-1_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3135-4

  • Online ISBN: 978-1-4939-3136-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics