Advertisement

Estrogen Receptor-α Knockout Mice

  • Per Antonson
  • Patricia Humire
  • Jan-Åke Gustafsson
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)

Abstract

Tissue specific knockout mice are valuable tools to study gene function in vivo. The method uses the Cre/loxP system in which loxP sites are cloned into the genome surrounding one or more exons of a gene and the targeted exon(s) are deleted when the Cre enzyme is expressed. Mouse lines that are prepared for the generation of knockout ERα mice have been developed independently by many research groups and the number of available transgenic mouse lines that express Cre under tissue specific promoters is large. Here, we describe how tissue specific ERα knockout mice are generated.

Key words

Estrogenreceptor Knockout mice Gene targeting Tissue specific Transgenic Cre enzyme Genotyping loxP Floxed 

Notes

Acknowledgments

This study was supported by a Grant from the Swedish Cancer Fund. J.-Å. G. is thankful to the Robert A. Welch Foundation for an endowment.

References

  1. 1.
    Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839CrossRefGoogle Scholar
  2. 2.
    Nilsson S, Makela S, Treuter E et al (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565CrossRefGoogle Scholar
  3. 3.
    Lubahn DB, Moyer JS, Golding TS et al (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 90:11162–11166CrossRefGoogle Scholar
  4. 4.
    Hewitt SC, Korach KS (2003) Oestrogen receptor knockout mice: roles for oestrogen receptors alpha and beta in reproductive tissues. Reproduction 125:143–149CrossRefGoogle Scholar
  5. 5.
    Bondesson M, Hao R, Lin CY et al (2014) Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta 1849(2):142–151CrossRefGoogle Scholar
  6. 6.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170CrossRefGoogle Scholar
  7. 7.
    Gu H, Marth JD, Orban PC et al (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265:103–106CrossRefGoogle Scholar
  8. 8.
    Dupont S, Krust A, Gansmuller A et al (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127:4277–4291PubMedGoogle Scholar
  9. 9.
    Wintermantel TM, Campbell RE, Porteous R et al (2006) Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52:271–280CrossRefGoogle Scholar
  10. 10.
    Feng Y, Manka D, Wagner KU, Khan SA (2007) Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci U S A 104:14718–14723CrossRefGoogle Scholar
  11. 11.
    Chen M, Wolfe A, Wang X et al (2009) Generation and characterization of a complete null estrogen receptor alpha mouse using Cre/LoxP technology. Mol Cell Biochem 321:145–153CrossRefGoogle Scholar
  12. 12.
    Martin-Millan M, Almeida M, Ambrogini E et al (2010) The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24:323–334CrossRefGoogle Scholar
  13. 13.
    Hewitt SC, Kissling GE, Fieselman KE et al (2010) Biological and biochemical consequences of global deletion of exon 3 from the ER alpha gene. FASEB J 24:4660–4667CrossRefGoogle Scholar
  14. 14.
    Antonson P, Omoto Y, Humire P et al (2012) Generation of ERalpha-floxed and knockout mice using the Cre/LoxP system. Biochem Biophys Res Commun 424:710–716CrossRefGoogle Scholar
  15. 15.
    Spence RD, Hamby ME, Umeda E et al (2011) Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc Natl Acad Sci U S A 108:8867–8872CrossRefGoogle Scholar
  16. 16.
    Xu Y, Nedungadi TP, Zhu L et al (2011) Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 14:453–465CrossRefGoogle Scholar
  17. 17.
    Gieske MC, Kim HJ, Legan SJ et al (2008) Pituitary gonadotroph estrogen receptor-alpha is necessary for fertility in females. Endocrinology 149:20–27CrossRefGoogle Scholar
  18. 18.
    Singh SP, Wolfe A, Ng Y et al (2009) Impaired estrogen feedback and infertility in female mice with pituitary-specific deletion of estrogen receptor alpha (ESR1). Biol Reprod 81:488–496CrossRefGoogle Scholar
  19. 19.
    Winuthayanon W, Hewitt SC, Orvis GD et al (2010) Uterine epithelial estrogen receptor alpha is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A 107:19272–19277CrossRefGoogle Scholar
  20. 20.
    Laws MJ, Kannan A, Pawar S et al (2014) Dysregulated estrogen receptor signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis in mice. PLoS Genet 10:e1004230CrossRefGoogle Scholar
  21. 21.
    Lee S, Kang DW, Hudgins-Spivey S et al (2009) Theca-specific estrogen receptor-alpha knockout mice lose fertility prematurely. Endocrinology 150:3855–3862CrossRefGoogle Scholar
  22. 22.
    Chen M, Yeh CR, Chang HC et al (2012) Loss of epithelial oestrogen receptor alpha inhibits oestrogen-stimulated prostate proliferation and squamous metaplasia via in vivo tissue selective knockout models. J Pathol 226:17–27CrossRefGoogle Scholar
  23. 23.
    Della Torre S, Rando G, Meda C et al (2011) Amino acid-dependent activation of liver estrogen receptor alpha integrates metabolic and reproductive functions via IGF-1. Cell Metab 13:205–214CrossRefGoogle Scholar
  24. 24.
    Matic M, Bryzgalova G, Gao H et al (2013) Estrogen signalling and the metabolic syndrome: targeting the hepatic estrogen receptor alpha action. PLoS One 8:e57458CrossRefGoogle Scholar
  25. 25.
    Nakamura T, Imai Y, Matsumoto T et al (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823CrossRefGoogle Scholar
  26. 26.
    Windahl SH, Borjesson AE, Farman HH et al (2013) Estrogen receptor-alpha in osteocytes is important for trabecular bone formation in male mice. Proc Natl Acad Sci U S A 110:2294–2299CrossRefGoogle Scholar
  27. 27.
    Maatta JA, Buki KG, Gu G et al (2013) Inactivation of estrogen receptor alpha in bone-forming cells induces bone loss in female mice. FASEB J 27:478–488CrossRefGoogle Scholar
  28. 28.
    Wong WP, Tiano JP, Liu S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107:13057–13062CrossRefGoogle Scholar
  29. 29.
    Davis KE, Neinast MD, Sun K et al (2013) The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2:227–242CrossRefGoogle Scholar
  30. 30.
    Antonson P, Matic M, Portwood N et al (2014) aP2-Cre-mediated inactivation of estrogen receptor alpha causes hydrometra. PLoS One 9:e85581CrossRefGoogle Scholar
  31. 31.
    Harno E, Cottrell EC, White A (2013) Metabolic pitfalls of CNS Cre-based technology. Cell Metab 18:21–28CrossRefGoogle Scholar
  32. 32.
    Rempe D, Vangeison G, Hamilton J et al (2006) Synapsin I Cre transgene expression in male mice produces germline recombination in progeny. Genesis 44:44–49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Per Antonson
    • 1
  • Patricia Humire
    • 1
  • Jan-Åke Gustafsson
    • 1
    • 2
  1. 1.Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
  2. 2.Center for Nuclear Receptors and Cell Signaling, Department of Biology and BiochemistryUniversity of HoustonHoustonUSA

Personalised recommendations