Silencing Estrogen Receptor-β with siRNA in Cultured Cells

  • Ren-Jun Hsu
  • Jui-Ming Liu
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)


Estrogen receptors α and β (ERα and ERβ) are the two genomic estrogen receptors. ERβ was the second of these receptors to be discovered; its structure is similar to that of ERα but they are different in histological distribution. However, the functions of ERα versus ERβ are still unclear. The ability of small interfering RNAs (siRNAs) to silence gene expression has proven to be invaluable for studying gene function in cultured mammalian cells. This chapter describes the use of siRNA to inhibit the expression of ERβ in renal cell carcinoma (RCC) and to further the understanding of ERβ function in RCC.

Key words

Estrogen Estrogenreceptorβ Small interfering RNA Transfection Western blot 


  1. 1.
    Bodine PV, Henderson RA, Green J et al (1998) Estrogen receptor-alpha is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology 139:2048–2057CrossRefGoogle Scholar
  2. 2.
    Couse JF, Curtis SW, Washburn TF et al (1995) Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol Endocrinol 9:1441–1454PubMedGoogle Scholar
  3. 3.
    Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20:358–417CrossRefGoogle Scholar
  4. 4.
    Cunha GR, Young P, Hom YK et al (1997) Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia 2:393–402CrossRefGoogle Scholar
  5. 5.
    Russo J, Ao X, Grill C et al (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227CrossRefGoogle Scholar
  6. 6.
    Anthony MS, Clarkson TB, Hughes CL Jr et al (1996) Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 126:43–50CrossRefGoogle Scholar
  7. 7.
    Makela S, Savolainen H, Aavik E et al (1999) Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proc Natl Acad Sci U S A 96:7077–7082CrossRefGoogle Scholar
  8. 8.
    Wiesen JF, Young P, Werb Z et al (1999) Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126:335–344PubMedGoogle Scholar
  9. 9.
    Zeps N, Bentel JM, Papadimitriou JM et al (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62:221–226CrossRefGoogle Scholar
  10. 10.
    Kobayashi S, Inoue S, Hosoi T et al (1996) Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 11:306–311CrossRefGoogle Scholar
  11. 11.
    Mizunuma H, Hosoi T, Okano H et al (1997) Estrogen receptor gene polymorphism and bone mineral density at the lumbar spine of pre- and postmenopausal women. Bone 21:379–383CrossRefGoogle Scholar
  12. 12.
    Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S et al (1998) Serum oestradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin Endocrinol (Oxf) 49:803–809CrossRefGoogle Scholar
  13. 13.
    Ignatov I, Belden C, Jacobson S et al (2009) Possible Alzheimer’s disease in an apolipoprotein E2 homozygote. J Alzheimers Dis 16:35–38CrossRefGoogle Scholar
  14. 14.
    Ogawa S, Inoue S, Watanabe T et al (1998) Molecular cloning and characterization of human estrogen receptor betacx: a potential inhibitor of estrogen action in human. Nucleic Acids Res 26:3505–3512CrossRefGoogle Scholar
  15. 15.
    Saji S, Sakaguchi H, Andersson S et al (2001) Quantitative analysis of estrogen receptor proteins in rat mammary gland. Endocrinology 142:3177–3186CrossRefGoogle Scholar
  16. 16.
    Yu CP, Ho JY, Huang YT et al (2013) Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-beta activation. PLoS One 8:e56667CrossRefGoogle Scholar
  17. 17.
    Helguero LA, Faulds MH, Gustafsson JA et al (2005) Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24:6605–6616CrossRefGoogle Scholar
  18. 18.
    Valencia-Sanchez MA, Liu J, Hannon GJ et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524CrossRefGoogle Scholar
  19. 19.
    Tan FL, Yin JQ (2004) RNAi, a new therapeutic strategy against viral infection. Cell Res 14:460–466CrossRefGoogle Scholar
  20. 20.
    Song E, Lee SK, Wang J et al (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Biobank Management Center of Tri-Service General HospitalNational Defense Medical CenterTaipeiTaiwan
  2. 2.Division of Urology, Department of Surgery, Taoyuan General HospitalMinistry of Health and WelfareTaoyuanTaiwan

Personalised recommendations