Use of Reporter Genes to Analyze Estrogen Response: The Transgenic Zebrafish Model

  • Daniel A. Gorelick
  • Caroline Lucia Pinto
  • Ruixin Hao
  • Maria Bondesson
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)

Abstract

In vivo models to detect estrogenic compounds are very valuable for screening for endocrine disruptors. Here we describe the use of transgenic estrogen reporter zebrafish as an in vivo model for identification of estrogenic properties of compounds. Live imaging of these transgenic fish provides knowledge of estrogen receptor specificity of different ligands as well as dynamics of estrogen signaling. Coupled to image analysis, the model can provide quantitative dose-response information on estrogenic activity of chemical compounds.

Key words

Transgeniczebrafish Estrogen Xenoestrogens Fluorescence microscopy Image analysis 

Notes

Acknowledgements

The data presented here were generated in projects funded by grants from the Environmental Protection Agency (R834289), NIH (F32HD061119) and startup funds from Dept. of Pharmacology & Toxicology at the University of Alabama at Birmingham.

References

  1. 1.
    Bridgham JT, Eick GN, Larroux C et al (2010) Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 8:e1000497CrossRefGoogle Scholar
  2. 2.
    Eick GN, Thornton JW (2011) Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol 334:31–38CrossRefGoogle Scholar
  3. 3.
    Bondesson M, Hao R, Lin CY et al (2014) Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta 1849(2):142–151CrossRefGoogle Scholar
  4. 4.
    Huang R, Sakamuru S, Martin MT et al (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep 4:5664CrossRefGoogle Scholar
  5. 5.
    Gerety SS, Breau MA, Sasai N et al (2013) An inducible transgene expression system for zebrafish and chick. Development 140:2235–2243CrossRefGoogle Scholar
  6. 6.
    Gorelick DA, Halpern ME (2011) Visualization of estrogen receptor transcriptional activation in zebrafish. Endocrinology 152:2690–2703CrossRefGoogle Scholar
  7. 7.
    Legler J, Zeinstra LM, Schuitemaker F et al (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415CrossRefGoogle Scholar
  8. 8.
    Tong SK, Mouriec K, Kuo MW et al (2009) A cyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis 47:67–73CrossRefGoogle Scholar
  9. 9.
    Gorelick DA, Iwanowicz LR, Hung AL et al (2014) Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ Health Perspect 122:356–362PubMedPubMedCentralGoogle Scholar
  10. 10.
    Hao R, Bondesson M, Singh AV et al (2013) Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis. PLoS One 8:e79020CrossRefGoogle Scholar
  11. 11.
    Avdesh A, Chen M, Martin-Iverson MT et al (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp e4196Google Scholar
  12. 12.
    Lawrence C, Best J, James A et al (2012) The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture 368–369:103–108CrossRefGoogle Scholar
  13. 13.
    Mandrell D, Truong L, Jephson C et al (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17:66–74CrossRefGoogle Scholar
  14. 14.
    Matos-Cruz V, Blasic J, Nickle B et al (2011) Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. PLoS One 6:e25111CrossRefGoogle Scholar
  15. 15.
    Pinto C, Grimaldi M, Boulahtouf A et al (2014) Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicol Appl Pharmacol 280:60–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniel A. Gorelick
    • 1
  • Caroline Lucia Pinto
    • 2
  • Ruixin Hao
    • 3
    • 4
  • Maria Bondesson
    • 2
  1. 1.Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Center for Nuclear Receptors and Cell Signaling, Department of Biology and BiochemistryUniversity of HoustonHoustonUSA
  3. 3.Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.DuPont Haskell Global Centers for Health and Environmental SciencesNewarkUSA

Personalised recommendations