Live-Cell Imaging of the Estrogen Receptor by Total Internal Reflection Fluorescence Microscopy

  • Kassandra Kisler
  • Reymundo Dominguez
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)


Trafficking studies of plasma membrane-localized intracellular estrogen receptors have mainly relied on biochemical and histological techniques to locate the receptor before and after estradiol stimulation. More often than not these experiments were performed using postmortem, lysed, or fixed tissue samples, whose tissue or cellular structure is typically severely altered or at times completely lost, making the definitive localization of estrogen receptors difficult to ascertain. To overcome this limitation we began using total internal reflection fluorescence microscopy (TIRFM) to study the trafficking of plasma membrane estrogen receptors. This real-time imaging approach, described in this chapter, permits observation of live, intact cells while allowing visualization of the steps (in time and spatial distribution) involved in receptor activation by estradiol and movements on and near the membrane. TIRFM yields high-contrast real-time images of fluorescently labeled E6BSA molecules on and just below the cell surface and is ideal for studying estrogen receptor trafficking in living cells.

Key words

Estrogenaction Estrogenreceptoralpha ERα Membrane-initiated estradiol signaling Plasma membrane estrogen receptors Total internal reflection fluorescence microscopy TIRFM Trafficking Endocytosis E6BSA-FITC 



This work was supported by a University of Southern California Provost’s Award to RD. Thanks to Dr. Robert H. Chow for support during the experimental studies described.


  1. 1.
    Luine VN (2014) Estradiol and cognitive function: past, present and future. Horm Behav 66(4):602–618CrossRefGoogle Scholar
  2. 2.
    Chaudhuri G (2008) Nuclear receptors and female reproduction: a tale of 3 scientists, Jensen, Gustafsson, and O’Malley. Reprod Sci 15(2):110–120CrossRefGoogle Scholar
  3. 3.
    Oren I, Fleishman SJ, Kessel A, Ben-Tal N (2004) Free diffusion of steroid hormones across biomembranes: a simplex search with implicit solvent model calculations. Biophys J 87(2):768–779CrossRefGoogle Scholar
  4. 4.
    Gronemeyer H (1991) Transcription activation by estrogen and progesterone receptors. Annu Rev Genet 25:89–123CrossRefGoogle Scholar
  5. 5.
    Fink G, Sumner BE, Rosie R, Grace O, Quinn JP (1996) Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell Mol Neurobiol 16(3):325–344CrossRefGoogle Scholar
  6. 6.
    Micevych P, Dominguez R (2009) Membrane estradiol signaling in the brain. Front Neuroendocrinol 30(3):315–327CrossRefGoogle Scholar
  7. 7.
    McEwen BS (1991) Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci 12(4):141–147CrossRefGoogle Scholar
  8. 8.
    McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM (2012) Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci 126(1):4–16CrossRefGoogle Scholar
  9. 9.
    Dominguez R, Micevych P (2010) Estradiol rapidly regulates membrane estrogen receptor alpha levels in hypothalamic neurons. J Neurosci 30(38):12589–12596CrossRefGoogle Scholar
  10. 10.
    Dominguez R, Dewing P, Kuo J, Micevych P (2013) Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids 78(6):607–613CrossRefGoogle Scholar
  11. 11.
    Dominguez R, Hu E, Zhou M, Baudry M (2009) 17beta-Estradiol-mediated neuroprotection and ERK activation require a pertussis toxin-sensitive mechanism involving GRK2 and beta-arrestin-1. J Neurosci 29(13):4228–4238CrossRefGoogle Scholar
  12. 12.
    Kumar R, Zakharov MN, Khan SH et al (2011) The dynamic structure of the estrogen receptor. J Amino Acids 2011:812540CrossRefGoogle Scholar
  13. 13.
    Kim KH, Toomre D, Bender JR (2011) Splice isoform estrogen receptors as integral transmembrane proteins. Mol Biol Cell 22(22):4415–4423CrossRefGoogle Scholar
  14. 14.
    Byrne C, Khemtemourian L, Pelekanou V et al (2012) ERalpha17p, a peptide reproducing the hinge region of the estrogen receptor alpha associates to biological membranes: a biophysical approach. Steroids 77(10):79–987CrossRefGoogle Scholar
  15. 15.
    Acconcia F, Ascenzi P, Bocedi A et al (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16(1):231–237CrossRefGoogle Scholar
  16. 16.
    Meitzen J, Luoma JI, Boulware MI et al (2013) Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 154(11):4293–4304CrossRefGoogle Scholar
  17. 17.
    Toran-Allerand CD (2000) Novel sites and mechanisms of oestrogen action in the brain. Novartis Found Symp 230:56–69PubMedGoogle Scholar
  18. 18.
    Christensen A, Micevych P (2012) CAV1 siRNA reduces membrane estrogen receptor-alpha levels and attenuates sexual receptivity. Endocrinology 153(8):3872–3877CrossRefGoogle Scholar
  19. 19.
    Luoma JI, Boulware MI, Mermelstein PG (2008) Caveolin proteins and estrogen signaling in the brain. Mol Cell Endocrinol 290(1–2):8–13CrossRefGoogle Scholar
  20. 20.
    Stumpf WE (1983) The histochemistry of steroid hormone “receptors”. J Histochem Cytochem 31(1):113–114CrossRefGoogle Scholar
  21. 21.
    Yamashita S (1998) Localization and functions of steroid hormone receptors. Histol Histopathol 13(1):255–270Google Scholar
  22. 22.
    Toran-Allerand CD, Miranda RC, Hochberg RB, MacLusky NJ (1992) Cellular variations in estrogen receptor mRNA translation in the developing brain: evidence from combined [125I]estrogen autoradiography and non-isotopic in situ hybridization histochemistry. Brain Res 576(1):25–41CrossRefGoogle Scholar
  23. 23.
    Pietras RJ, Levin ER, Szego CM (2005) Estrogen receptors and cell signaling. Science 310(5745):51–53, author reply 51–53CrossRefGoogle Scholar
  24. 24.
    Srivastava DP, Evans PD (2013) G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 25(11):1219–1230CrossRefGoogle Scholar
  25. 25.
    Langer G, Bader B, Meoli L et al (2010) A critical review of fundamental controversies in the field of GPR30 research. Steroids 75(8–9):603–610CrossRefGoogle Scholar
  26. 26.
    Toran-Allerand CD (2004) Minireview: a plethora of estrogen receptors in the brain: where will it end? Endocrinology 145(3):1069–1074CrossRefGoogle Scholar
  27. 27.
    Kisler K, Chow RH, Dominguez R (2013) Fluorescently-labeled estradiol internalization and membrane trafficking in live N-38 neuronal cells visualized with total internal reflection fluorescence microscopy. J Steroids Horm Sci Suppl 12Google Scholar
  28. 28.
    Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2(4):268–275CrossRefGoogle Scholar
  29. 29.
    Dhillon SS, Belsham DD (2011) Estrogen inhibits NPY secretion through membrane-associated estrogen receptor (ER)-alpha in clonal, immortalized hypothalamic neurons. Int J Obes 35(2):198–207CrossRefGoogle Scholar
  30. 30.
    Axelrod D, Thompson NL, Burghardt TP (1983) Total internal inflection fluorescent microscopy. J Microsc 129(Pt 1):19–28CrossRefGoogle Scholar
  31. 31.
    Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309CrossRefGoogle Scholar
  32. 32.
    Martin-Fernandez ML, Tynan CJ, Webb SE (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252(1):16–22CrossRefGoogle Scholar
  33. 33.
    Poulter NS, Pitkeathly WT, Smith PJ, Rappoport JZ (2015) The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications. Methods Mol Biol 1251:1–23CrossRefGoogle Scholar
  34. 34.
    Taguchi Y, Koslowski M, Bodenner DL (2004) Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA). Nucl Recept 2(1):5CrossRefGoogle Scholar
  35. 35.
    Stirone C, Duckles SP, Krause DN (2003) Multiple forms of estrogen receptor-alpha in cerebral blood vessels: regulation by estrogen. Am J Physiol Endocrinol Metab 284(1):E184–E192CrossRefGoogle Scholar
  36. 36.
    Meijering E, Dzyubachyk O, Smal I, Conn PM (2012) Chapter 9: Methods for cell and particle tracking. In: Methods in enzymology, vol 504. Academic, New York, pp 183–200Google Scholar
  37. 37.
    Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L (2004) Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 145(1):393–400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, and the Zilkha Neurogenetic InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physiology and BiophysicsKeck Schoolof Medicine of the University of Southern CaliforniaLos AngelesUSA
  3. 3.The Zilkha Neurogenetic InstituteKeck School of Medicine of the University of Southern CaliforniaLos AngelesUSA

Personalised recommendations