Advertisement

Gold Nanoparticles for Biomedical Applications: Synthesis and In Vitro Evaluation

  • Peter Chhour
  • Pratap C. Naha
  • Rabee Cheheltani
  • Barbara Benardo
  • Shaameen Mian
  • David P. CormodeEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Gold nanoparticles can be synthesized in a wide range of sizes and shapes. They can be coated with molecules, polymers, or phospholipids that yield solubility and stability in biological fluids. Gold is inert and is generally regarded as biocompatible. Depending on their shape and structure, gold nanoparticles can have a number of remarkable properties, such as strong and tunable attenuation of light, fluorescence, conversion of light to heat, and attenuation of X-rays. Due to these properties, gold nanoparticles have a wide range of biomedical applications. They have been used as contrast agents for fluorescence, optical, photoacoustic, and X-ray imaging. They can function as drug or gene delivery vectors. They can also play roles in photothermal or radiosensitization treatment regimens. We herein present methods to synthesize, coat, and purify spherical gold nanoparticles that are 15–100 nm in diameter. We describe protocols to characterize these gold nanoparticles with dynamic light scattering, transmission electron microscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES) and for computed tomography contrast generation. Last, we detail methods to assess nanoparticle uptake by cells, effect on cell viability, and effect on cell function.

Key words

Gold nanoparticles Nanomedicine Characterization Electron microscopy computed tomography Cell uptake Cell viability Cytokine expression 

Notes

Acknowledgements

This work was supported by R00 EB012165 (D.P.C.), T32 HL007954 (P.C.), and the W. W. Smith Charitable Trust. We also thank the University of Pennsylvania for start-up funding.

References

  1. 1.
    Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Engl J Med 363(25):2434–2443CrossRefPubMedGoogle Scholar
  2. 2.
    Briley-Saebo KC, Geninatti Crich S, Cormode DP, Barazza A, Mulder WJM, Chen W, Giovenzana GB, Fisher EA, Aime S, Fayad ZA (2009) High-relaxivity gadolinium-modified high-density lipoproteins as magnetic resonance imaging contrast agents. J Phys Chem B 113:6283–6289PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Corot C, Robert P, Idee J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504CrossRefPubMedGoogle Scholar
  4. 4.
    Yigit MV, Moore A, Medarova Z (2012) Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 29(5):1180–1188PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Chacko AM, Hood ED, Zern BJ, Muzykantov VR (2011) Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr Opin Colloid Interface Sci 16(3):215–227PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Cheng ZL, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Cormode DP, Naha P, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedGoogle Scholar
  9. 9.
    Antonie F (1616) Panacea aurea-auro potabile. John Legatt, LondonGoogle Scholar
  10. 10.
    Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11:4029–4036PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Dreaden E, Alkilany A, Huang X, Murphy C, El-Sayed M (2011) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefPubMedGoogle Scholar
  12. 12.
    Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10(4):831–847PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 53:1756–1789CrossRefPubMedGoogle Scholar
  14. 14.
    Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9(6):2212–2217CrossRefPubMedGoogle Scholar
  16. 16.
    von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701CrossRefGoogle Scholar
  18. 18.
    Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90CrossRefPubMedGoogle Scholar
  20. 20.
    Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomas H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035CrossRefPubMedGoogle Scholar
  21. 21.
    Pearson S, Scarano W, Stenzel MH (2012) Micelles based on gold-glycopolymer complexes as new chemotherapy drug delivery agents. Chem Commun 48(39):4695–4697CrossRefGoogle Scholar
  22. 22.
    Kong WH, Bae KH, Jo SD, Kim JS, Park TG (2012) Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res 29(2):362–374CrossRefPubMedGoogle Scholar
  23. 23.
    Mieszawska AJ, Kim Y, Gianella A, van Rooy I, Priem B, Labarre MP, Ozcan C, Cormode DP, Petrov A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ (2013) Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug Chem 24(9):1429–1434CrossRefPubMedGoogle Scholar
  24. 24.
    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253CrossRefPubMedGoogle Scholar
  25. 25.
    Liu CJ, Wang CH, Chen ST, Chen HH, Leng WH, Chien CC, Wang CL, Kempson IM, Hwu Y, Lai TC, Hsiao M, Yang CS, Chen YJ, Margaritondo G (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55(4):931–945CrossRefPubMedGoogle Scholar
  26. 26.
    Al Zaki A, Joh D, Cheng ZL, De Barros ALB, Kao G, Dorsey J, Tsourkas A (2014) Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 8(1):104–112PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Pilot Study of AuroLase(tm) Therapy in Refractory and/or Recurrent Tumors of the Head and Neck (Clinical trial identifier: NCT00848042). http://www.clinicaltrialsgov/ct2/show/NCT00848042
  28. 28.
    Plasmonic Nanophotothermic Therapy of Atherosclerosis (NANOM) (Clinical trial identifier: NCT01270139). http://www.clinicaltrialsgov/ct2/show/NCT01270139
  29. 29.
    Plasmonic Photothermal and Stem Cell Therapy of Atherosclerosis Versus Biodegradable Stenting (NANOM2) (Clinical trial identifier: NCT01436123). http://www.clinicaltrialsgov/ct2/show/NCT01436123
  30. 30.
    Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Seidel GD, Yuldasheva N, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  32. 32.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067CrossRefGoogle Scholar
  33. 33.
    Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16(3):1590–1599CrossRefPubMedGoogle Scholar
  35. 35.
    Yuan H, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109(32):15256–15263CrossRefPubMedGoogle Scholar
  37. 37.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefPubMedGoogle Scholar
  38. 38.
    Frens G (1973) Controlled nucleation for regulation of particle size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22CrossRefGoogle Scholar
  39. 39.
    Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043CrossRefPubMedGoogle Scholar
  40. 40.
    Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJ (2013) Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introducing multifunctionality. NMR Biomed 26(7):766–780PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest Radiol 42(12):797–806CrossRefPubMedGoogle Scholar
  42. 42.
    Patil V, Malvankar RB, Sastry M (1999) Role of particle size in individual and competitive diffusion of carboxylic acid derivatized colloidal gold particles in thermally evaporated fatty amine films. Langmuir 15:8197–8206CrossRefGoogle Scholar
  43. 43.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 801–802Google Scholar
  44. 44.
    Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30CrossRefGoogle Scholar
  45. 45.
    Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJM (2008) Nanocrystal core high-density lipoproteins: a multimodal molecular imaging contrast agent platform. Nano Lett 8(11):3715–3723PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Mieszawska AJ, Gianella A, Cormode DP, Zhao Y, Meijerink A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJM (2012) Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem Commun 48:5835–5837CrossRefGoogle Scholar
  47. 47.
    Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, Ma G, Russell S, Callo CB, Gordon RE, Korkmaz E, Post JA, Zhao Y, Gerritsen HC, Storm G, Thran A, Proksa R, Daerr H, Fuster V, Fisher EA, Fayad ZA, Mulder WJ, Cormode DP (2013) Gold nanocrystal labeling allows low density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano 7(11):9761–9770CrossRefPubMedGoogle Scholar
  48. 48.
    Pham T, Jackson JB, Halas NJ, Lee TR (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18(12):4915–4920CrossRefGoogle Scholar
  49. 49.
    Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)(3) or NH4OH. Nano Lett 7(6):1764–1769PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606CrossRefGoogle Scholar
  51. 51.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708CrossRefPubMedGoogle Scholar
  52. 52.
    Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJM, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256(3):774–782PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Naha P, Al-Zaki A, Hecht ER, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WRT, Litt HI, Tsourkas A, Cormode DP (2014) Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B Mater Biol Med 2(46):8239–8248CrossRefPubMedGoogle Scholar
  54. 54.
    Liu H, Pierre-Pierre N, Huo Q (2012) Dynamic light scattering for gold nanorod size characterization and study of nanorod-protein interactions. Gold Bull 45:187–195CrossRefGoogle Scholar
  55. 55.
    Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22:8178–8185CrossRefPubMedGoogle Scholar
  56. 56.
    Chhour P, Gallo N, Re C, Williams D, Al-Zaki A, Nichol JL, Tian Z, Paik T, Naha PC, Allcock HR, Murray CB, Tsourkas A, Cormode DP (2014) Nano-disco balls: control over surface versus core loading of diagnostically active nanocrystals into polymer nanoparticles. ACS Nano 8(9):9143–9153PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Galper MW, Saung MT, Fuster V, Roessl E, Thran A, Proksa R, Fayad ZA, Cormode DP (2012) Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Invest Radiol 47(8):475–481PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Jackson PA, Rahman WNWA, Wong CJ, Ackerly T, Geso M (2010) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75(1):104–109CrossRefPubMedGoogle Scholar
  59. 59.
    Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMedGoogle Scholar
  60. 60.
    Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150CrossRefPubMedGoogle Scholar
  61. 61.
    Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11):8629–8639CrossRefPubMedGoogle Scholar
  62. 62.
    Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefPubMedGoogle Scholar
  63. 63.
    Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6(7):5767–5783CrossRefPubMedGoogle Scholar
  64. 64.
    Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327CrossRefPubMedGoogle Scholar
  66. 66.
    Chuang SM, Lee YH, Liang RY, Roam GD, Zeng ZM, Tu HF, Wang SK, Chueh PJ (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim Biophys Acta 1830(10):4960–4973CrossRefPubMedGoogle Scholar
  67. 67.
    Schaeublin NM, Braydich-Stolle LK, Maurer EI, Park K, MacCuspie RI, Afrooz AR, Vaia RA, Saleh NB, Hussain SM (2012) Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model. Langmuir 28(6):3248–3258CrossRefPubMedGoogle Scholar
  68. 68.
    Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900CrossRefPubMedGoogle Scholar
  69. 69.
    Cai H, Yao P (2014) Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity. Colloids Surf B Biointerfaces 123:900–906CrossRefPubMedGoogle Scholar
  70. 70.
    Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216CrossRefPubMedGoogle Scholar
  71. 71.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefPubMedGoogle Scholar
  72. 72.
    Naha PC, Bhattacharya K, Tenuta T, Dawson KA, Lynch I, Gracia A, Lyng FM, Byrne HJ (2010) Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicol Lett 198(2):134–143CrossRefPubMedGoogle Scholar
  73. 73.
    Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol Appl Pharmacol 246(1–2):91–99CrossRefPubMedGoogle Scholar
  74. 74.
    Wu YL, Putcha N, Ng KW, Leong DT, Lim CT, Loo SC, Chen X (2013) Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc Chem Res 46(3):782–791CrossRefPubMedGoogle Scholar
  75. 75.
    Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448CrossRefPubMedGoogle Scholar
  76. 76.
    Naha P, Chhour P, Cormode DP (2015) Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicology In Vitro, 29:1445–1453Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Peter Chhour
    • 1
    • 2
  • Pratap C. Naha
    • 1
  • Rabee Cheheltani
    • 1
  • Barbara Benardo
    • 1
  • Shaameen Mian
    • 2
  • David P. Cormode
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of CardiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations