Skip to main content

Synthetic Polymeric Nanoparticles for Immunomodulation

  • Protocol
Nanomaterials in Pharmacology

Abstract

Synthetic polymeric nanoparticles have gained tremendous attention since the beginning of this century. Their tunable size, shape, and surface properties make them efficient carriers and delivery systems for a vast cohort of drugs into the body, including peptides, proteins, lipid, and nucleic acids. Also, because of their unique and tunable biochemical properties, polymeric nanoparticles are able to modulate immune responses in vivo, either by themselves as adjuvant, or by presenting antigens and/or co-stimulatory/inhibitory signals to the immune system. Therefore, intensive efforts are being devoted to investigating and applying synthetic polymeric nanoparticles in vaccine development and immunotherapy for cancer, infectious diseases and autoimmune disorders. In this book chapter, we first introduce the main targets of particulate systems for immunomodulation, then talk about the factors that influence their function and performance in immunotherapy and lastly discuss the strategies that are currently in use or under investigation to treat immune diseases using synthetic polymeric nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbell JA, Thomas SN, Swartz MA (2009) Materials engineering for immunomodulation. Nature 462(7272):449–460. doi:10.1038/nature08604

    CAS  PubMed  Google Scholar 

  2. Jiao Q, Li L, Mu Q, Zhang Q (2014) Immunomodulation of nanoparticles in nanomedicine applications. BioMed Res Int 2014:426028. doi:10.1155/2014/426028

    PubMed Central  PubMed  Google Scholar 

  3. Heegaard PM, Boas U, Sorensen NS (2010) Dendrimers for vaccines and immunostimulatory uses. A Review. Bioconjug Chem 21(3):405

    CAS  PubMed  Google Scholar 

  4. Tarik A, Khan STR (2014) Immunological principles regulating immunomodulation with biomaterials. Acta Biomater 10:8

    Google Scholar 

  5. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. doi:10.1016/j.immuni.2013.07.012

    PubMed  Google Scholar 

  6. Feldmann M, Steinman L (2005) Design of effective immunotherapy for human autoimmunity. Nature 435(7042):612–619. doi:10.1038/nature03727

    CAS  PubMed  Google Scholar 

  7. Steer HJ, Lake RA, Nowak AK, Robinson BW (2010) Harnessing the immune response to treat cancer. Oncogene 29(48):6301–6313. doi:10.1038/onc.2010.437

    CAS  PubMed  Google Scholar 

  8. Thiele L, Merkle HP, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 20(2):221–228

    CAS  PubMed  Google Scholar 

  9. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA (2014) Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35(2):814–824. doi:10.1016/j.biomaterials.2013.10.003

    CAS  PubMed  Google Scholar 

  10. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, Jenkins MK (2003) Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19(1):47–57. doi:10.1016/s1074-7613(03)00175-4

    CAS  PubMed  Google Scholar 

  11. Pape KA, Catron DM, Itano AA, Jenkins MK (2007) The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26(4):491–502. doi:10.1016/j.immuni.2007.02.011

    CAS  PubMed  Google Scholar 

  12. Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45–S53. doi:10.1038/nm1213

    CAS  PubMed  Google Scholar 

  13. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51(4):239–240. doi:10.2144/000113754, 242, 244 passim

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469

    CAS  PubMed  Google Scholar 

  15. Abul K, Abbas KMM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:7

    Google Scholar 

  16. Rebecca L, McCall RWS (2013) PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp 82:8

    Google Scholar 

  17. Ebru Kizilay ABK, Dubin PL (2011) Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv Colloid Interface Sci 167:14

    Google Scholar 

  18. Krishnendu Roy H-Q, Huang S-k, Leong KW (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):15

    Google Scholar 

  19. Sudhir P, Kasturi KS, Roy K (2005) Covalent conjugation of polyethyleneimine on biodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterials 26:11

    Google Scholar 

  20. Ankur Singh HN, Ghosn B, Qin H, Kwak LW, Roy K (2008) Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol Ther 16(12):11

    Google Scholar 

  21. Pradhan P, Qin H, Leleux JA, Gwak D, Sakamaki I, Kwak LW, Roy K (2014) The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials 35(21):5491–5504. doi:10.1016/j.biomaterials.2014.03.039

    CAS  PubMed  Google Scholar 

  22. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, Garcia-Sastre A, Compans R, Pulendran B (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335):543

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164. doi:10.1038/nbt1332

    CAS  PubMed  Google Scholar 

  24. Rehor A, Tirelli N, Hubbell JA (2002) A new living emulsion polymerization mechanism-episulfide anionic polymerization. Macromolecules 35:6

    Google Scholar 

  25. Iosif Daniel Roscaa FW, Uob M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:10

    Google Scholar 

  26. Hong Shen ALA, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Mark Saltzman W, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117:11

    Google Scholar 

  27. Tan S, Sasada T, Bershteyn A, Yang K, Ioji T, Zhang Z (2014) Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomedicine (Lond) 9(5):635–647. doi:10.2217/nnm.13.67

    CAS  Google Scholar 

  28. Todd CW, Pozzi LA, Guarnaccia JR, Balasubramanianj M, Henkf WG, Youngert LE, Newman MJ (1997) Development of an adjuvant-active nonionic block copolymer for use in oil-free subunit vaccines formulations. Vaccine 15(5):564

    CAS  PubMed  Google Scholar 

  29. de Kruif CG, Renko de Vries FW (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9:10

    Google Scholar 

  30. Somayeh Hallaj-Nezhadi FL, Dass CR (2010) Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 13(3):14

    Google Scholar 

  31. Hallaj-Nezhad S, Valizadeh H, Dastmalchi S, Baradaran B, Jalali MB, Dobakhti F, Lotfipour F (2011) Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells. J Pharm Pharm Sci 14(2):15

    Google Scholar 

  32. Donbrow M (1992) Phase seperation and coacervation. In: Donbrow M (ed) Microcapsules and nanoparticles in medicine and pharmacy. CRC Press, Boca Raton, FL, p 2

    Google Scholar 

  33. Landge DA, Shyale SS, Kadam SD, Shah DV, Katare YS, Pawar JB (2014) Dendrimer: an innovative acceptable approach in novel drug delivery system. Pharmacophore 5(1):11

    Google Scholar 

  34. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled dendrimers in vivo. J Control Release 65:133

    CAS  PubMed  Google Scholar 

  35. Kimiko Makino NY, Higuchi K, Harada N, Ohshima H, Terada H (2003) Phagocytic uptake of polystyrene microspheres by alveolar macrophages- effects of the size and surface properties of the microspheres. Colloids Surf B Biointerfaces 27:7

    Google Scholar 

  36. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36. doi:10.1016/j.ejps.2005.08.002

    CAS  PubMed  Google Scholar 

  37. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413. doi:10.1002/eji.200737984

    CAS  PubMed  Google Scholar 

  38. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IFC, Plebanski M (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148–3154. doi:10.4049/jimmunol.173.5.3148

    CAS  PubMed  Google Scholar 

  39. Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J, O’Neill LA, Lavelle EC (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A 106(3):870–875. doi:10.1073/pnas.0804897106

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Maaike van Zijverdena BG (2000) Adjuvant activity of particulate pollutants in different mouse model. Toxicology 152:9

    Google Scholar 

  41. Lutsiak ME, Kwon GS, Samuel J (2006) Biodegradable nanoparticle delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 58(6):739–747. doi:10.1211/jpp.58.6.0004

    CAS  PubMed  Google Scholar 

  42. de Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, Garcia E, Couvreur P (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34(12):3702–3712. doi:10.1002/eji.200425022

    PubMed  Google Scholar 

  43. Cui Z, Patel J, Tuzova M, Ray P, Phillips R, Woodward JG, Nath A, Mumper RJ (2004) Strong T cell type-1 immune responses to HIV-1 Tat (1-72) protein-coated nanoparticles. Vaccine 22(20):2631–2640. doi:10.1016/j.vaccine.2003.12.013

    CAS  PubMed  Google Scholar 

  44. Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1):1–9. doi:10.1016/j.ymeth.2006.05.016

    CAS  PubMed  Google Scholar 

  45. Rachit Agarwal VS, Jurney P, Li S, Sreenivasan SV, Roy K (2012) Scalable imprinting of shape-specific polymeric nano using a release layer of switchable water solubility. ACS Nano 6(3):8

    Google Scholar 

  46. Rachit Agarwal VS, Jurney P, Li S, Sreenivasan SV, Roy K (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci U S A 110(43):6

    Google Scholar 

  47. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103(13):4930–4934. doi:10.1073/pnas.0600997103

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595. doi:10.1038/nmat2202

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Petersen LK, Xue L, Wannemuehler MJ, Rajan K, Narasimhan B (2009) The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Biomaterials 30(28):5131–5142. doi:10.1016/j.biomaterials.2009.05.069

    CAS  PubMed  Google Scholar 

  51. Purwada A, Roy K, Singh A (2014) Engineering vaccines and niches for immune modulation. Acta Biomater 10(4):1728–1740. doi:10.1016/j.actbio.2013.12.036

    CAS  PubMed  Google Scholar 

  52. Pai Kasturi S, Qin H, Thomson KS, El-Bereir S, Cha SC, Neelapu S, Kwak LW, Roy K (2006) Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J Control Release 113(3):261–270. doi:10.1016/j.jconrel.2006.04.006

    PubMed  Google Scholar 

  53. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775. doi:10.1158/1078-0432.CCR-10-2672

    CAS  PubMed  Google Scholar 

  54. Kastenmuller W, Kastenmuller K, Kurts C, Seder RA (2014) Dendritic cell-targeted vaccines - hope or hype? Nat Rev Immunol 14(10):705–711. doi:10.1038/nri3727

    PubMed  Google Scholar 

  55. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H (2010) Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater 9(7):572–578. doi:10.1038/nmat2784

    CAS  PubMed  Google Scholar 

  56. Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT (2000) Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release 67:347

    CAS  PubMed  Google Scholar 

  57. Ataman-Onal Y, Munier S, Ganee A, Terrat C, Durand PY, Battail N, Martinon F, Le Grand R, Charles MH, Delair T, Verrier B (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 112(2):175–185. doi:10.1016/j.jconrel.2006.02.006

    PubMed  Google Scholar 

  58. Nanotechnology Characterization Laboratory (2006) Dendrimer-based MRI contrast agents, NCL200612A, December 2006. As of November 17, 2008. http://ncl.cancer.gov/120406.pdf

  59. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I, Mireskandari K, Luthert P, Duncan R, Patterson S, Khaw P, Brocchini S (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22(8):977–984. doi:10.1038/nbt995

    CAS  PubMed  Google Scholar 

  60. Sanjeeb K, Sahoo JP, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly(D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:10

    Google Scholar 

  61. Seong S-Y, Matzinger Y (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:10

    Google Scholar 

  62. Marcucci F, Lefoulon F (2004) Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today 9(5):219–228. doi:10.1016/s1359-6446(03)02988-x

    CAS  PubMed  Google Scholar 

  63. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212. doi:10.1016/j.addr.2012.09.033

    Google Scholar 

  64. McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD (2014) Targeted immunomodulation using antigen-conjugated nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):298–315. doi:10.1002/wnan.1263

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Hafner AM, Corthesy B, Merkle HP (2013) Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 65(10):1386–1399. doi:10.1016/j.addr.2013.05.013

    CAS  PubMed  Google Scholar 

  66. Thibaut De Smedt BP, Muraille E, Lespagnard L, Heinen E, De Baetselier P, Urbain J, Leo O, Moser M (1996) Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 184:12

    Google Scholar 

  67. Hiroaki Hemmi OT, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:6

    Google Scholar 

  68. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. doi:10.1146/annurev.immunol.21.120601.141126

    CAS  PubMed  Google Scholar 

  69. Oliver Schiulz CRES (2002) Cross-presentation of cell-associated antigens by CD8α + dendritic cells is attributable to their ability to internalize dead cells. Immunology 107:7

    Google Scholar 

  70. Anita Gamvrellis DL, Hanley JC, Xiang SD, Mottram P, Plebanski M (2004) Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 82:11

    Google Scholar 

  71. Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844. doi:10.1182/blood-2011-07-367615

    CAS  PubMed  Google Scholar 

  72. Heo MB, Lim YT (2014) Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 35(1):590–600. doi:10.1016/j.biomaterials.2013.10.009

    CAS  PubMed  Google Scholar 

  73. Irvine DJ, Swartz MA, Szeto GL (2013) Engineering synthetic vaccines using cues from natural immunity. Nat Mater 12(11):978–990. doi:10.1038/nmat3775

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Dube A, Reynolds JL, Law WC, Maponga CC, Prasad PN, Morse GD (2014) Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine 10(4):831–838. doi:10.1016/j.nano.2013.11.012

    CAS  PubMed  Google Scholar 

  75. Yao H, Ng SS, Huo LF, Chow BK, Shen Z, Yang M, Sze J, Ko O, Li M, Yue A, Lu LW, Bian XW, Kung HF, Lin MC (2011) Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol Cancer Ther 10(6):1082–1092. doi:10.1158/1535-7163.MCT-10-0717

    CAS  PubMed  Google Scholar 

  76. Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32(3):926–932. doi:10.1016/j.biomaterials.2010.09.058

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Zaharoff DA, Hoffman BS, Hooper HB, Benjamin CJ Jr, Khurana KK, Hance KW, Rogers CJ, Pinto PA, Schlom J, Greiner JW (2009) Intravesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res 69(15):6192–6199. doi:10.1158/0008-5472.CAN-09-1114

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Kim TH, Jin H, Kim HW, Cho MH, Cho CS (2006) Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 5(7):1723–1732. doi:10.1158/1535-7163.MCT-05-0540

    CAS  PubMed  Google Scholar 

  79. Yockman JW, Maheshwari A, S-o H, Kim SW (2003) Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J Control Release 87(1-3):177–186. doi:10.1016/s0168-3659(02)00362-0

    CAS  PubMed  Google Scholar 

  80. Diez S, Navarro G, de ILarduya CT (2009) In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J Gene Med 11(1):38–45. doi:10.1002/jgm.1273

    CAS  PubMed  Google Scholar 

  81. Yang Y, Chen J, Li H, Wang Y, Xie Z, Wu M, Zhang H, Zhao Z, Chen Q, Fu M, Wu K, Chi C, Wang H, Gao R (2007) Porcine interleukin-2 gene encapsulated in chitosan nanoparticles enhances immune response of mice to piglet paratyphoid vaccine. Comp Immunol Microbiol Infect Dis 30(1):19–32. doi:10.1016/j.cimid.2006.09.006

    PubMed  Google Scholar 

  82. Godin-Ethier J, Hanafi LA, Piccirillo CA, Lapointe R (2011) Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clin Cancer Res 17(22):6985–6991. doi:10.1158/1078-0432.CCR-11-1331

    CAS  PubMed  Google Scholar 

  83. Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72(21):5435–5440. doi:10.1158/0008-5472.CAN-12-0569

    CAS  PubMed  Google Scholar 

  84. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, Mandik-Nayak L, Metz R, Ostrand-Rosenberg S, Prendergast GC, Muller AJ (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2(8):722–735. doi:10.1158/2159-8290.CD-12-0014

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Andersen MH (2012) The specific targeting of immune regulation: T-cell responses against Indoleamine 2,3-dioxygenase. Cancer Immunol Immunother 61(8):1289–1297. doi:10.1007/s00262-012-1234-4

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799. doi:10.1038/nrc3603

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Motz GT, Coukos G (2013) Deciphering and reversing tumor immune suppression. Immunity 39(1):61–73. doi:10.1016/j.immuni.2013.07.005

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, Noerenberg D, Anders HJ, Mayr D, Poeck H, Hartmann G, Endres S, Schnurr M (2013) Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res 73(6):1709–1720. doi:10.1158/0008-5472.CAN-11-3850

    CAS  PubMed  Google Scholar 

  90. Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195(1-2):21–27. doi:10.1016/j.jneuroim.2007.12.005

    CAS  PubMed  Google Scholar 

  91. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12(10):1383–1397. doi:10.1517/14712598.2012.707184

    PubMed Central  CAS  PubMed  Google Scholar 

  93. von Boehmer H, Daniel C (2013) Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 12(1):51–63. doi:10.1038/nrd3683

    Google Scholar 

  94. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi:10.1038/nm1093

    CAS  PubMed  Google Scholar 

  95. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. doi:10.1200/JCO.2006.05.9584

    PubMed  Google Scholar 

  96. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633. doi:10.1172/JCI25947

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106. doi:10.1111/j.1749-6632.2009.04939.x

    CAS  PubMed  Google Scholar 

  98. Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM, Klasen IS, Hilbrands LB, Figdor CG, de Vries IJ, Adema GJ (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16(20):5067–5078. doi:10.1158/1078-0432.CCR-10-1757

    CAS  PubMed  Google Scholar 

  99. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rebe C, Ghiringhelli F (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70(8):3052–3061. doi:10.1158/0008-5472.CAN-09-3690

    CAS  PubMed  Google Scholar 

  100. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721. doi:10.1158/1078-0432.CCR-05-0883

    CAS  PubMed  Google Scholar 

  101. Tigli Aydin RS, Pulat M (2012) 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater 2012:1–10. doi:10.1155/2012/313961

    Google Scholar 

  102. Shenoy VS, Gude RP, Ramachandra Murthy RS (2013) In vitro anticancer evaluation of 5-fluorouracil lipid nanoparticles using B16F10 melanoma cell lines. Int Nano Lett 3:9

    Google Scholar 

  103. Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine 6:1685–1697. doi:10.2147/IJN.S20165

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJ, Shea LD, Miller SD (2012) Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30(12):1217–1224. doi:10.1038/nbt.2434

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Huang L, Lemos HP, Li L, Li M, Chandler PR, Baban B, McGaha TL, Ravishankar B, Lee JR, Munn DH, Mellor AL (2012) Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol 188(10):4913–4920. doi:10.4049/jimmunol.1103668

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Michael D, Rosenblum IKG, Paw JS, Abbas AK (2012) Treating human autoimmunity-current practice and future prospects. State Art Rev 4(125):10

    Google Scholar 

  107. Maxwell LJ, Singh JA (2010) Abatacept for rheumatoid arthritis: a Cochrane systematic review. J Rheumatol 37(2):12

    Google Scholar 

  108. Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, Hafler DA, Egorova S, Guttmann CR, Rusche JR, Khoury SJ (2008) CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology 71(12):8

    Google Scholar 

  109. Felix NJ, Suri A, Salter-Cid L, Nadler SG, Gujrathi S, Corbo M, Aranda R (2010) Targeting lymphocyte co-stimulation: from bench to bedside. Autoimmunity 43(7):13

    Google Scholar 

  110. Mease P, Genovese MC, Gladstein G, Kivitz AJ, Ritchlin C, Tak PP, Wollenhaupt J, Bahary O, Becker JC, Kelly S, Sigal L, Teng J, Gladman D (2011) Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum 63(4):939–948. doi:10.1002/art.30176

    CAS  PubMed  Google Scholar 

  111. Marek-Trzonkowska N, Mysliwec M, Siebert J, Trzonkowski P (2013) Clinical application of regulatory T cells in type 1 diabetes. Pediatr Diabetes 14(5):322–332. doi:10.1111/pedi.12029

    CAS  PubMed  Google Scholar 

  112. Tang Q, Bluestone JA (2013) Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med 3(11):pii: a015552. doi:10.1101/cshperspect.a015552

    Google Scholar 

  113. McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117(20):5403–5412. doi:10.1182/blood-2010-11-320028

    CAS  PubMed  Google Scholar 

  114. Millers SD, Henry RPW, Claman N (1979) The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J Exp Med 149:16

    Google Scholar 

  115. Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8(12):970–976. doi:10.1038/nri2438

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Mandke R, Singh J (2012) Cationic nanomicelles for delivery of plasmids encoding interleukin-4 and interleukin-10 for prevention of autoimmune diabetes in mice. Pharm Res 29(3):883–897. doi:10.1007/s11095-011-0616-1

    CAS  PubMed  Google Scholar 

  117. Basarkar A, Singh J (2009) Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm Res 26(1):72–81. doi:10.1007/s11095-008-9710-4

    CAS  PubMed  Google Scholar 

  118. Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM (2009) Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27(23):3013–3021. doi:10.1016/j.vaccine.2009.03.034

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Manish Diwan MT, Samuel J (2002) Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release 85:16

    Google Scholar 

  120. Clawson C, Huang CT, Futalan D, Seible DM, Saenz R, Larsson M, Ma W, Minev B, Zhang F, Ozkan M, Ozkan C, Esener S, Messmer D (2010) Delivery of a peptide via poly(D, L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine 6(5):651–661. doi:10.1016/j.nano.2010.03.001

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26(39):5046–5057. doi:10.1016/j.vaccine.2008.07.035

    CAS  PubMed  Google Scholar 

  122. Primard C, Poecheim J, Heuking S, Sublet E, Esmaeili F, Borchard G (2013) Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol Pharm 10(8):2996–3004. doi:10.1021/mp400092y

    CAS  PubMed  Google Scholar 

  123. Buyuktimkin B, Wang Q, Kiptoo P, Stewart JM, Berkland C, Siahaan TJ (2012) Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 9(4):979–985. doi:10.1021/mp200614q

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25(7):1316–1327. doi:10.1016/j.vaccine.2006.09.086

    CAS  PubMed  Google Scholar 

  125. Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2008) Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 8(13–14):1773–1780. doi:10.1016/j.intimp.2008.08.013

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Roy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, J., Pradhan, P., Roy, K. (2016). Synthetic Polymeric Nanoparticles for Immunomodulation. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics