Cardiovascular Nanomedicine: Materials and Technologies

Part of the Methods in Pharmacology and Toxicology book series (MIPT)


The advent of nanotechnology in the medical arena has led to unique ways of biomaterials engineering and device modifications, disease detection and treatment. To this end, the two principal nanomedicine focus areas are cancer and cardiovascular pathologies. The current chapter is aimed at presenting a comprehensive review of nanotechnology-based strategies in cardiovascular diseases, with emphasis on targeted delivery of therapeutic payloads selectively at the disease site. The rationale for such strategies stem from the need of resolving the issues of (1) rapid drug clearance, (2) plasma-induced drug deactivation, (3) suboptimal drug availability at the disease site, and (4) indiscriminate biodistribution of the drugs leading to harmful systemic side effects, all of which arise when drugs are administered directly in systemic circulation. The most significant application of nanotechnology in resolving these issues is by packaging the drugs within plasma-stable nanovehicles that can preferentially accumulate at the vascular disease site via passive uptake or bind actively to the site via antigen-specific ligands decorated on the vehicle surface. During past three decades, significant advancements in understanding vascular disease-associated genomics and proteomics, cellular and molecular mechanisms as well as nanoscale and microscale strategies of biomaterials engineering have led to several exciting nanomedicine approaches in vascular disease treatment. The chapter will describe these approaches in terms of materials engineering, payload release mechanisms, biochemical and biophysical design parameters of the delivery platforms, and integration of multiple design parameters and functionalities on single vehicle platform, along with discussing the promises and limitations of such vascular nanomedicine approaches.

Key words

Nanotechnology Cardiovascular Targeting Drug delivery Nanomedicine 


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al. (2014) On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommitte. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129: e28Google Scholar
  2. 2.
    WHO (2011) Global atlas on cardiovascular disease prevention and control. World Health Organization, GenevaGoogle Scholar
  3. 3.
    Phillips DR, Conley PB, Sinha U, Andre P (2005) Therapeutic approaches in arterial thrombosis. J Thromb Haemost 3:1577–1589PubMedGoogle Scholar
  4. 4.
    Gurbel PA, Serebruany VL (2000) Oral Platelet IIb/IIIa inhibitors: from attractive theory to clinical failures. J Thromb Thrombolysis 10:217–220PubMedGoogle Scholar
  5. 5.
    Marzilli M (1995) From the experimental myocardial infarction to the clinical acute myocardial infarction: limitations of thrombolytic therapy. Int J Cardiol 49:S71–S75PubMedGoogle Scholar
  6. 6.
    Rebeiz AG, Granger CB, Simoons ML (2005) Incidence and management of complications of fibrinolytic, antiplatelet, and anticoagulant therapy. Fundam Clin Cardiol 52:375–395Google Scholar
  7. 7.
    Brieger D, Topol E (1997) Local drug delivery systems and prevention of restenosis. Cardiovasc Res 35:405–413PubMedGoogle Scholar
  8. 8.
    Eccleston DS, Lincoff AM (1997) Catheter-based drug delivery for restenosis. Adv Drug Deliv Rev 24:31–43Google Scholar
  9. 9.
    Fattori R, Piva T (2003) Drug-eluting stents in vascular intervention. Lancet 361:247–249PubMedGoogle Scholar
  10. 10.
    Torchilin VP (1995) Targeting of drugs and drug carriers within the cardiovascular system. Adv Drug Deliv Rev 17:75–101Google Scholar
  11. 11.
    Zolot RS, Basu S, Million RP (2013) Antibody–drug conjugates. Nat Rev Drug Discov 12:259–260PubMedGoogle Scholar
  12. 12.
    Wang X, Palasubramaniam J, Gkanatsas Y, Hohmann JD, Westein E, Kanojia R, Alt K, Huang D, Jia F, Ahrens I, Medcalf RL, Peter K, Hagemeyer CE (2014) Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res 114:1083–1093PubMedGoogle Scholar
  13. 13.
    Dong N, Da Cunha V, Citkowicz A, Wu F, Vincelette J, Larsen B, Wang YX, Ruan C, Dole WP, Morser J, Wu Q, Pan J (2004) P-selectin-targeting of the fibrin selective thrombolytic Desmodus rotundus salivary plasminogen activator alpha1. Thromb Haemost 92:956–965PubMedGoogle Scholar
  14. 14.
    Diamond SL (1999) Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng 1:427–461PubMedGoogle Scholar
  15. 15.
    Thomas AC, Campbell JH (2004) Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis. Atherosclerosis 176:73–81PubMedGoogle Scholar
  16. 16.
    Sen Gupta A (2011) Nanomedicine approaches in vascular disease: a review. Nanomedicine 7:763–779Google Scholar
  17. 17.
    Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Poly Sci Symp 51:135–153Google Scholar
  18. 18.
    Elvira C, Gallardo A, Roman JS, Cifuentes A (2005) Covalent polymer-drug conjugates. Molecules 10:114–125PubMedGoogle Scholar
  19. 19.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701PubMedGoogle Scholar
  20. 20.
    Berger HJ Jr, Pizzo SV (1988) Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: characteristics and behavior in three animal species. Blood 71:1641–1647PubMedGoogle Scholar
  21. 21.
    Rajagopalan S, Gonias SL, Pizzo SV (1985) A nonantigenic covalent streptokinasepolyethylene glycol complex with plasminogen activator function. J Clin Invest 75:413–419PubMedCentralPubMedGoogle Scholar
  22. 22.
    Sakuragawa N, Shimizu K, Kondo K, Kondo S, Niwa M (1986) Studies on the effect of PEG-modified urokinase on coagulation-fibrinolysis using beagles. Thromb Res 41:627–635PubMedGoogle Scholar
  23. 23.
    Moreadith RW, Collen D (2003) Clinical development of PEGylated recombinant staphylokinase (PEGSak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv Drug Deliv Rev 55:1337–1345PubMedGoogle Scholar
  24. 24.
    Collen D, Sinnaeve P, Demarsin E, Moreau H, De Maeyer M, Jespers L, Laroche Y, Van de Werf F (2000) Polyethylene glycol-derivatized cysteine substitution variants of recombinant staphylokinase for single-bolus treatment of acute myocardial infarction. Circulation 102:1766–1772PubMedGoogle Scholar
  25. 25.
    Lasic DD, Papahadjopaulos D (eds) (1998) Medical applications of liposomes. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160PubMedGoogle Scholar
  27. 27.
    Cˇeh B, Winterhalter M, Frederik PM, Vallner JJ, Lasic DD (1997) Stealth® liposomes: from theory to product. Adv Drug Deliv Rev 24:165–177Google Scholar
  28. 28.
    Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198PubMedGoogle Scholar
  29. 29.
    Nguyen PD, O’Rear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R (1990) Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ Res 66:875–878PubMedGoogle Scholar
  30. 30.
    Heeremans JLM, Prevost R, Bekkers MEA, Los P, Emeis JJ, Kluft C, Crommelin DJ (1995) Thrombolytic treatment with tissue-type plasminogen activators (t-PA) containing liposomes in rabbit: a comparison with free t-PA. Thromb Haemost 73:488–494PubMedGoogle Scholar
  31. 31.
    Leach JK, O’Rear EA, Patterson E, Miao Y, Johnson AE (2003) Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb Haemost 90:64–70PubMedGoogle Scholar
  32. 32.
    Perkins WR, Vaughan DE, Plavin SR, Daley WL, Rauch J, Lee L, Janoff AS (1997) Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 77:1174–1178PubMedGoogle Scholar
  33. 33.
    Kim I-S, Choi H-G, Choi H-S, Kim B-K, Kim C-K (1998) Prolonged systemic delivery of streptokinase using liposome. Arch Pharm Res 21:248–252PubMedGoogle Scholar
  34. 34.
    Dzau VJ, Mann MJ, Morishita R, Kaneda Y (1996) Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A 93:11421–11425PubMedCentralPubMedGoogle Scholar
  35. 35.
    Nabel EG (1995) Gene therapy for cardiovascular disease. Circulation 91:541–548PubMedGoogle Scholar
  36. 36.
    Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ (1993) Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest 91:2580–2585PubMedCentralPubMedGoogle Scholar
  37. 37.
    Leclerc G, Gal D, Takeshita S, Nikol S, Weir L, Isner JM (1992) Percutaneous arterial gene transfer in a rabbit model: efficiency in normal and balloon-dilated atherosclerotic arteries. J Clin Invest 90:936–944PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lim CS, Chapman GD, Gammon RS, Muhlestein JB, Bauman RP, Stack RS, Swain JL (1991) Direct in vivo gene transfer into the coronary and peripheral vasculatures of the intact dog. Circulation 83:2007–2011PubMedGoogle Scholar
  39. 39.
    Chapman GD, Lim CS, Gammon RS, Culp SC, Desper S, Bauman RP, Swain JL, Stack RS (1992) Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ Res 71:27–33PubMedGoogle Scholar
  40. 40.
    Zheng J, Liu J, Dunne M, Jaffray DA, Allen C (2007) In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharm Res 24:1193–1201PubMedGoogle Scholar
  41. 41.
    Maiseyeu A, Mihai G, Kampfrath T, Simonetti OP, Sen CK, Roy S, Rajagopalan S, Parthasarathy S (2009) Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 50:2157–2163PubMedCentralPubMedGoogle Scholar
  42. 42.
    Rensen PC, Gras JC, Lindfors EK, van Dijk KW, Jukema JW, van Berkel TJ, Biessen EA (2006) Selective targeting of liposomes to macrophages using a ligand with high affinity for the macrophage scavenger receptor class A. Curr Drug Discov Technol 3:135–144PubMedGoogle Scholar
  43. 43.
    Mulder WJM, Douma K, Koning GA, van Zandvoort MA, Lutgens E, Daemen MJ, Nikolay K, Strijkers GJ (2006) Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55:1170–1174PubMedGoogle Scholar
  44. 44.
    Discher DE, Ahmed F (2006) Polymersomes. Annu Rev Biomed Eng 8:323–341PubMedGoogle Scholar
  45. 45.
    Lee JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161:473–483PubMedGoogle Scholar
  46. 46.
    Massignani M, Lomas H, Battaglia G (2010) Polymersomes: a synthetic biological approach to encapsulation and delivery. Adv Polym Sci 229:115–154Google Scholar
  47. 47.
    Akagi D, Oba M, Koyama H, Nishiyama N, Fukushima S, Miyata T, Nagawa H, Kataoka K (2007) Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 14:1029–1038PubMedGoogle Scholar
  48. 48.
    Ding B-S, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR (2006) Advanced drug delivery systems that target the vascular endothelium. Mol Interv 6:98–112PubMedGoogle Scholar
  49. 49.
    Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16PubMedGoogle Scholar
  50. 50.
    Lincoff MA, Topol EJ, Ellis SG (1994) Local drug delivery for the prevention of restenosis: facts, fancy and future. Circulation 90:2070–2084PubMedGoogle Scholar
  51. 51.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedGoogle Scholar
  52. 52.
    Yang Z, Birkenhauer P, Julmy F, Chickering D, Ranieri JP, Merkle HP, Lüscher TF, Gander B (1999) Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. J Control Release 60:269–277PubMedGoogle Scholar
  53. 53.
    Chung T-W, Wang SS, Tsai W-J (2008) Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 29:228–237PubMedGoogle Scholar
  54. 54.
    Klugherz BD, Meneveau N, Chen W, Wade-Whittaker F, Papandreou G, Levy R, Wilensky RL (1999) Sustained intramural retention and regional redistribution following local vascular delivery of Polylactic-co-glycolic acid and liposomal nanoparticulate formulations containing probucol. J Cardiovasc Pharmacol Ther 4:167–174PubMedGoogle Scholar
  55. 55.
    Kolodgie FD, John M, Khurana C, Farb A, Wilson PS, Acampado E, Desai N, Soon-Shiong P, Virmani R (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1195–1198PubMedGoogle Scholar
  56. 56.
    Westedt U, Kalinowski M, Wittmer M, Merdan T, Unger F, Fuchs J, Schaller S, Bakowsky U, Kissel T (2007) Poly (vinyl alcohol)-graft-poly (lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 119:41–51PubMedGoogle Scholar
  57. 57.
    Deshpande D, Devalapally H, Amiji M (2008) Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon coadministration with ceramide using biodegradable polymeric nanoparticles. Pharm Res 25:1936–1947PubMedGoogle Scholar
  58. 58.
    Zou W, Cao G, Xi Y, Zhang N (2009) New approach for local delivery of rapamycin by bioadhesive PLGA-carbopol nanoparticles. Drug Deliv 16:15–23PubMedGoogle Scholar
  59. 59.
    Zweers ML, Engbers GH, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly (ethylene oxide)-poly(DL-lactic-co-glycolic acid) nanoparticles. J Control Release 114:317–324PubMedGoogle Scholar
  60. 60.
    Luderer F, Lobler M, Rohm HW, Gocke C, Kunna K, Kock K, Kroemer HK, Westschies W, Shmitz KP, Sternberg K (2011) Biodegradable sirolimus loaded poly(lactide) nanoparticles as drug delivery systems for the prevention of in-stent restenosis in coronary stent application. J Biomater Appl 25:851–875PubMedGoogle Scholar
  61. 61.
    Nakano K, Egashira K, Masuda S, Funakoshi K, Zhao G, Kimura S, Matoba T, Sueishi K, Endo Y, Kawashima Y, Hara K, Tsujimoto H, Tominagu R, Sunagawa K (2009) Formulation of nanoparticle eluting stents by a cationic electrodesposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle eluting stents in porcine coronary arteries. JACC Cardiovasc Interv 2:277–283PubMedGoogle Scholar
  62. 62.
    Margolis J, McDonald J, Heuser R, Klkinke P, Waksman R, Virmani R, Desai N, Hilton D (2007) Systemic nanoparticle paclitaxel (nab-paclitaxel) for in-stent restenosis-I (SNAPIST-I): a first in human safety and dose finding study. Clin Cardiol 30:165–170PubMedGoogle Scholar
  63. 63.
    Unger E, Matsunaga TO, Schumann PA, Zutshi R (2003) Microbubbles in molecular imaging and therapy. Medicamundi 47:58–65Google Scholar
  64. 64.
    Cavalieri F, Finelli I, Tortora M, Mozetic P, Chiessi E, Polizio F, Brismar TB, Paradossi G (2008) Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 20:3254–3258Google Scholar
  65. 65.
    Tsivgoulis G, Culp WC, Alexandrov AV (2008) Ultrasound enhanced thrombolysis in acute arterial ischemia. Ultrasonics 48:303–311PubMedGoogle Scholar
  66. 66.
    Marta R, Alexandrov AV (2010) Sonothrombolysis in the management of acute ischemic stroke. Am J Cardiovasc Drugs 10:5–10Google Scholar
  67. 67.
    Mayer CR, Bekeredjian R (2008) Ultrasonic gene and drug delivery to cardiovascular system. Adv Drug Deliv Rev 60:1177–1192PubMedGoogle Scholar
  68. 68.
    Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK (2009) Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 124:306–310PubMedCentralPubMedGoogle Scholar
  69. 69.
    Tiukinhoy-Laing SD, Buchanan K, Parikh D, Huang S, MacDonald RC, McPherson DD, Klegerman ME (2007) Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 15:109–114PubMedGoogle Scholar
  70. 70.
    Tomalia DA (1996) Starburst dendrimers—nanoscopic supermolecules according to dendritic rules and principles. Macromol Symp 101:243–255Google Scholar
  71. 71.
    Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647Google Scholar
  72. 72.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications - reflections on the field. Adv Drug Deliv Rev 57:2106–2129PubMedGoogle Scholar
  73. 73.
    Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66PubMedCentralPubMedGoogle Scholar
  74. 74.
    Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908PubMedGoogle Scholar
  75. 75.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Lasers Med Sci 23:217–228PubMedGoogle Scholar
  76. 76.
    Rosen JE, Chan L, Shieh DB, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8:275–290PubMedGoogle Scholar
  77. 77.
    Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852PubMedCentralPubMedGoogle Scholar
  78. 78.
    Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003PubMedCentralPubMedGoogle Scholar
  79. 79.
    Turkevitch J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75Google Scholar
  80. 80.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) Synthesis of thiol derivatized gold nanoparticles in a two phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802Google Scholar
  81. 81.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179PubMedGoogle Scholar
  82. 82.
    Vekilov PG (2011) Gold nanoparticles: grown in a crystal. Nat Nanotechnol 6:82–83PubMedGoogle Scholar
  83. 83.
    Au L, Lu X, Xia Y (2008) A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2− or AuCl4−. Adv Mater 20:2517–2522PubMedCentralPubMedGoogle Scholar
  84. 84.
    Choi Y, Hong S, Liu L, Kim SK, Park S (2012) Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance. Langmuir 28:6670–6676PubMedGoogle Scholar
  85. 85.
    Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR (2013) Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application. EPMA J 4:18. doi: 10.1186/1878-5085-4-18 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Wang B, Yantsen E, Larson T, Karpiouk AB, Sethuraman S, Su JL, Sokolov K, Emelianov SY (2009) Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9:2212–2217PubMedGoogle Scholar
  87. 87.
    Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, Fuster V, Fisher EA, Mulder WJ, Proksa R, Fayad ZA (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–782PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim SY, Choi K, Kwon IC, Kim K, Ahn CH (2008) A near-infrared fluorescence- quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed 47:2804–2807Google Scholar
  89. 89.
    Lukianova-Hleb EY, Mrochek AG, Lapotko DO (2009) Method for disruption and re-canalization of atherosclerotic plaques in coronary vessels with photothermal bubbles generated around gold nanoparticles. Lasers Surg Med 41:240–247PubMedGoogle Scholar
  90. 90.
    Karaagac O, Kockar H, Beyaz S, Tanrisever T (2010) A simple way to synthesize superparamagnetic Iron Oxide nanoparticles in air atmosphere: iron ion concentration effect. IEEE Trans Magn 46:3978–3983Google Scholar
  91. 91.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493PubMedGoogle Scholar
  92. 92.
    McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251PubMedCentralPubMedGoogle Scholar
  93. 93.
    Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130PubMedCentralPubMedGoogle Scholar
  94. 94.
    Bjørnerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17:465–477PubMedGoogle Scholar
  95. 95.
    Yilmaz A, Dengler MA, van der Kuip H, Yildiz H, Rösch S, Klumpp S, Klingel K, Kandolf R, Helluy X, Hiller KH, Jakob PM, Sechtem U (2013) Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34:462–475PubMedGoogle Scholar
  96. 96.
    Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92PubMedGoogle Scholar
  97. 97.
    Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635PubMedGoogle Scholar
  98. 98.
    Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SP, Gillard JH (2009) Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 29:1001–1008PubMedGoogle Scholar
  99. 99.
    Schmitz SA, Taupitz M, Wagner S, Wol KJ, Beyersdorff D, Hamm B (2001) Magnetic resonance imaging of atherosclerotic plaques using superparamagenetic iron oxide particles. J Magn Reson Imaging 14:355–361PubMedGoogle Scholar
  100. 100.
    Morishige K, Kacher DF, Libby P, Josephson L, Ganz P, Weissleder R, Aikawa M (2010) High- resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 122:1707–1715PubMedCentralPubMedGoogle Scholar
  101. 101.
    Sigovan M, Boussel L, Sulaiman A, Sappet-Marinier D, Alsaid H, Desbled-Mansard C, Ibarrola D, Gamondès D, Corot C, Lancelot E, Raynaud JS, Vives V, Laclédère C, Violas X, Douek PC, Canet-Soulas E (2009) Rapid clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409PubMedGoogle Scholar
  102. 102.
    Kawahara I, Nakamoto M, Kitagawa N, Tsutsumi K, Nagata I, Morikawa M, Hayashi T (2008) Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol Med Chir 48:157–162Google Scholar
  103. 103.
    Erdem SS, Sazonova IY, Hara T, Jaffer FA, McCarthy JR (2012) Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 508:191–209PubMedGoogle Scholar
  104. 104.
    Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2006) Heparinized magnertic nanoparticles: in vitro assessment for biomedical applications. Adv Funct Mater 16:1723–1730Google Scholar
  105. 105.
    Chorny M, Fishbein I, Yellen BB, Alferiev IS, Bakay M, Ganta S, Adamo R, Amiji M, Friedman G, Levy RJ (2010) Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proc Natl Acad Sci U S A 107:8346–8651PubMedCentralPubMedGoogle Scholar
  106. 106.
    Sharma R, Kwon S (2007) New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci 2:115–126Google Scholar
  107. 107.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging. Probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000PubMedCentralPubMedGoogle Scholar
  108. 108.
    Sinusas AJ, Bengel F, Nahrendorf M, Epstein FH, Wu JC, Villanueva FS, Fayad ZA, Gropler RJ (2008) Multimodality cardiovascular molecular imaging, Part I. Circ Cardiovasc Imaging 1:244–256PubMedGoogle Scholar
  109. 109.
    Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, Lindner JR, Wu JC, Kraitchman DL, Fayad ZA, Sinusas AJ (2009) Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2:56–70PubMedCentralPubMedGoogle Scholar
  110. 110.
    Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385PubMedGoogle Scholar
  111. 111.
    Douma K, Prinzen L, Slaaf DW, Reutelingsperger CPM, Biessen EA, Hackeng TM, Post MJ, van Zandvoort MA (2009) Nanoparticles for optical molecular imaging of atherosclerosis. Small 5:544–557PubMedGoogle Scholar
  112. 112.
    Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Tissue and organ-selective biodistribution of NIR-fluorescent quantum dots. Nano Lett 9:2354–2359PubMedCentralPubMedGoogle Scholar
  113. 113.
    Tang Y, Han S, Liu H, Chen X, Huang L, Li X, Zhang J (2013) The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 34:8741–8755PubMedGoogle Scholar
  114. 114.
    Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC (2010) In vivo quantum-dot toxicity assessment. Small 6:138–144PubMedGoogle Scholar
  115. 115.
    Skajaa T, Cormode DP, Falk E, Mulder WJM, Fisher EA, Fayad ZA (2010) High-density lipoprotein based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 30:169–176PubMedCentralPubMedGoogle Scholar
  116. 116.
    Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126:16316–16317PubMedGoogle Scholar
  117. 117.
    Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224PubMedGoogle Scholar
  118. 118.
    Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146PubMedGoogle Scholar
  119. 119.
    Hirsjärvi S, Passirani C, Benoit JP (2011) Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 8:188–196PubMedGoogle Scholar
  120. 120.
    Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 5:1415–1433Google Scholar
  121. 121.
    Blackwell JE, Dagia NM, Dickerson JB, Berg EL, Goetz DJ (2001) Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions. Ann Biomed Eng 29:523–533PubMedGoogle Scholar
  122. 122.
    Jancsó G, Domoki F, Sántha P, Varga J, Fischer J, Orosz K, Penke B, Becskei A, Dux M, Tóth L (1998) Beta-amyloid (1-42) peptide impairs blood-brain barrier function after intracarotid infusion in rats. Neurosci Lett 253:139–141PubMedGoogle Scholar
  123. 123.
    Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y (2002) Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: specific synergy of receptor-ligand interactions. Blood 100:136–142PubMedGoogle Scholar
  124. 124.
    Wada T, Okamura Y, Takeoka S, Sudo R, Ikeda Y, Tanishita K (2009) Deformability and adhesive force of artificial platelets measured by atomic force microscopy. J Biorheol 23:35–40Google Scholar
  125. 125.
    Nishiya T, Kainoh M, Murata M, Handa M, Ikeda Y (2001) Platelet interactions with liposomes carrying recombinant platelet membrane glycoproteins or fibrinogen: approach to platelet substitutes. Artif Cells Blood Substit Immobil Biotechnol 29:453–464PubMedGoogle Scholar
  126. 126.
    Wilchek M, Bayer EA, Livnah O (2006) Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol Lett 103:27–32PubMedGoogle Scholar
  127. 127.
    Lesch HP, Kaikkonen MU, Pikkarainen JT, Ylä-Herttuala S (2010) Avidin-biotin technology in targeted therapy. Expert Opin Drug Deliv 7:551–564PubMedGoogle Scholar
  128. 128.
    Ganguly K, Krasik T, Medinilla S, Bdeir K, Cines DB, Muzykantov VR, Murciano JC (2005) Blood clearance and activity of erythrocyte-coupled fibrinolytics. J Pharmacol Exp Ther 312:1106–1113PubMedGoogle Scholar
  129. 129.
    Gersh KC, Zaitsev S, Cines DB, Muzykantov V, Weisel JW (2011) Flow-dependent channel formation in clots by an erythrocyte-bound fibrinolytic agent. Blood 117:4964–4967PubMedCentralPubMedGoogle Scholar
  130. 130.
    Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR (2003) Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 21:891–896PubMedGoogle Scholar
  131. 131.
    Muzykantov V (2013) Targeted drug delivery to endothelial adhesion molecules. ISRN Vasc Med 2013, 916254, Scholar
  132. 132.
    Sen Gupta A, von Recum HA (2014) Bioconjugation strategies: lipids, liposomes, polymersomes, and microbubbles. Chapter 6. In: Narain R (ed) Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Wiley, New York, NYGoogle Scholar
  133. 133.
    Demos MS, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson DD (1999) In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33:867–875PubMedGoogle Scholar
  134. 134.
    Klegerman ME, Zou Y, McPherson DD (2008) Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res 18:95–112PubMedGoogle Scholar
  135. 135.
    Huang S-L (2008) Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1167–1176PubMedGoogle Scholar
  136. 136.
    Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, Mehta JL, Beller GA, Glover DK, Meyer CH (2010) Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1by SPECT/CT and Magnetic Resonance. Circ Cardiovasc Imaging 3:464–472PubMedCentralPubMedGoogle Scholar
  137. 137.
    De Bittencourt PIH Jr, Lagranha DJ, Maslinkiewicz A, Senna SM, Tavares AMV, Baldissera LP, Janner DR, Peralta JS, Bock PM, Gutierrez LL, Scola G, Heck TG, Krause MS, Cruz LA, Abdalla DS, Lagranha CJ, Lima T, Curi R (2007) LipoCardium: endotheliumdirected cyclopentanone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis 193:245–258Google Scholar
  138. 138.
    Haji-Valizadeh H, Modery-Pawlowski CL, Sen Gupta A (2014) An FVIII-derived peptide enables VWF-binding of a synthetic platelet surrogate without interfering with natural platelet adhesion to VWF. Nanoscale 6:4765–4773PubMedCentralPubMedGoogle Scholar
  139. 139.
    Modery-Pawlowski CL, Tian LL, Ravikumar M, Wong TL, Sen Gupta A (2013) In vitro and in vivo hemostatic capabilities of a functionally integrated platelet-mimetic liposomal nanoconstruct. Biomaterials 34:3031–3041PubMedGoogle Scholar
  140. 140.
    Ravikumar M, Modery CL, Wong TL, Dzuricky M, Sen Gupta A (2012) Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes. Bioconjug Chem 23:1266–1275PubMedGoogle Scholar
  141. 141.
    Ravikumar M, Modery CL, Wong TL, Sen Gupta A (2012) Peptide-decorated liposomes promote arrest and aggregation of activated platelets under flow on vascular injury relevant protein surfaces in vitro. Biomacromolecules 13:1495–1502PubMedGoogle Scholar
  142. 142.
    Modery CL, Ravikumar M, Wong T, Dzuricky M, Durongkaveroj N, Sen Gupta A (2011) Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 32:9504–9514PubMedGoogle Scholar
  143. 143.
    Srinivasan R, Marchant RE, Sen Gupta A (2010) In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A 93:1004–1015PubMedCentralPubMedGoogle Scholar
  144. 144.
    Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, Sen Gupta A (2008) Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 29:1676–1685PubMedCentralPubMedGoogle Scholar
  145. 145.
    Sen Gupta A, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE (2005) RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 93:106–114Google Scholar
  146. 146.
    Mulder WJM, Strijkers GJ, Briley-Saboe KC, Frias JC, Aguinaldo JGS, Vucic E, Amirbekian V, Tang C, Chin PT, Nicolay K, Fayad ZA (2007) Molecular imaging of macrophages in atherosclerotic plaques using biomodal PEG-micelles. Magn Reson Med 58:1164–1170PubMedGoogle Scholar
  147. 147.
    Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JGS, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA, Fayad ZA (2006) MRI to detect atherosclerosis with Gadoliniumcontaining immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56:601–610PubMedGoogle Scholar
  148. 148.
    Briley-Saebo KC, Shaw PX, Mulder WJM, Choi SH, Vucic E, Aguinaldo JGS, Witztum JL, Fuster V, Tsimikas S, Fayad ZA (2008) Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117:3206–3215PubMedCentralPubMedGoogle Scholar
  149. 149.
    Amirbekian V, Lipinski MJ, Frias JC, Amirbekian S, Briley-Saebo KC, Mani V, Samber D, Abbate A, Aguinaldo JGS, Masey D, Fuster V, Vetrovec G, Fayad ZA (2009) MR imaging of human atherosclerosis using immunomicelles molecularly targeted to macrophages. J Cardiovasc Magn Reson 11(Suppl 1):83Google Scholar
  150. 150.
    Chan JM, Zhang L, Tong R, Ghosh D, Gao W, Liao G, Yuet KP, Gray D, Rhee JW, Cheng J, Golomb G, Libby P, Langer R, Farokhzad OC (2010) Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A 107:2213–2218PubMedCentralPubMedGoogle Scholar
  151. 151.
    Chan JM, Rhee JW, Drum CL, Bronson RT, Golomb G, Langer R, Farokhzad OC (2011) In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci U S A 108:19347–19352PubMedCentralPubMedGoogle Scholar
  152. 152.
    Peters D, Kastantin M, Kotamraju VR, Karmali PP, Gujraty K, Tirrell M, Ruoslahti E (2009) Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci U S A 106:9815–9819PubMedCentralPubMedGoogle Scholar
  153. 153.
    Hamzah J, Kotamraju VR, Seo JW, Agemy L, Fogal V, Mahakian LM, Peters D, Roth L, Gagnon MK, Ferrara KW, Ruoslahti E (2011) Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 108:7154–7159PubMedCentralPubMedGoogle Scholar
  154. 154.
    Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR (2006) Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intracellular adhesion molecule. J Pharmacol Exp Ther 317:1161–1169PubMedGoogle Scholar
  155. 155.
    Deosarkar SP, Malgor R, Fu J, Kohn LD, Hanes J, Goetz DJ (2008) Polymeric particles conjugated with a ligandto VCAM-1 exhibit selective avid and focal adhesion to sites of atherosclerosis. Biotechnol Bioeng 101:400–407PubMedGoogle Scholar
  156. 156.
    Bertram JP, Williams CA, Robinson R, Segal SS, Flynn NT, Lavik EB (2009) Intravenous hemostat: nanotechnology to halt bleeding. Sci Transl Med 1:11–22Google Scholar
  157. 157.
    Coller BS, Springer KT, Beer JH, Mohandas N, Scudder LE, Norton KJ, West SM (1992) Thromboerythrocytes. In vitro studies of a potential autologous, semiartificial alternative to platelet transfusions. J Clin Invest 89:546–555PubMedCentralPubMedGoogle Scholar
  158. 158.
    Levi M, Friederich PW, Middleton S, de Groot PG, Wu YP, Harris R, Biemond BJ, Heijnen HF, Levin J, ten Cate JW (1999) Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits. Nat Med 5:107–111PubMedGoogle Scholar
  159. 159.
    Okamura Y, Takeoka S, Teramura Y, Maruyama H, Tsuchida E, Handa M, Ikeda Y (2005) Hemostatic effects of fibrinogen gamma-chain dodecapeptide-conjugated polymerized albumin particles in vitro and in vivo. Transfusion 45:1221–1228PubMedGoogle Scholar
  160. 160.
    Okamura Y, Fujie T, Nogawa M, Maruyama H, Handa M, Ikeda Y, Takeoka S (2008) Haemostatic effects of polymerized albumin particles carrying fibrinogen gamma-chain dodecapeptide as platelet substitutes in severely thrombocytopenic rabbits. Transfus Med 18:158–166PubMedGoogle Scholar
  161. 161.
    Takeoka S, Okamura Y, Teramura Y, Watanabe N, Suzuki H, Tsuchida E, Handa M, Ikeda Y (2003) Function of fibrinogen gamma-chain dodecapeptide-conjugated latex beads under flow. Biochem Biophys Res Commun 312:773–779PubMedGoogle Scholar
  162. 162.
    Okamura Y, Handa M, Suzuki H, Ikeda Y, Takeoka S (2006) New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugated latex beads under flow conditions. J Artif Organs 9:251–258PubMedGoogle Scholar
  163. 163.
    Chen W, Jarzyna PA, van Tilborg GA, Nguyen VA, Cormode DP, Klink A, Griffioen AW, Randolph GJ, Fisher EA, Mulder WJ, Fayad ZA (2010) RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe. FASEB J 24:1689–9169PubMedCentralPubMedGoogle Scholar
  164. 164.
    Kaufmann BA, Sanders JM, Davis C, Xie A, Aldred P, Sarembock IJ, Lindner JR (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284PubMedGoogle Scholar
  165. 165.
    Lindner JR (2009) Molecular imaging of cardiovascular disease with contrastenhanced ultrasonography. Nat Rev Cardiol 6:475–481PubMedGoogle Scholar
  166. 166.
    Villanueva FS, Wagner W (2006) Ultrasound molecular imaging of cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:S26–S32Google Scholar
  167. 167.
    Alonso A, Della Martina A, Stroick M, Fatar M, Griebe M, Pochon S, Schneider M, Hennerici M, Allémann E, Meairs S (2007) Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 38:1508–1514PubMedGoogle Scholar
  168. 168.
    Hagooly A, Almutairi A, Rossin R, Shokeen M, Ananth A, Anderson C, Abendschein D, Fréchet J, Welch M (2008) Evaluation of a RGD-dendrimer labeled with 76Br in hindlimb ischemia mouse model. J Nucl Med 49(Suppl 1):184Google Scholar
  169. 169.
    Taite LJ, West JL (2006) Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. J Biomat Sci Polym Ed 17:1159–1172Google Scholar
  170. 170.
    Makowski M, Jansen C, Botnar R, Kim WY, Maintz D, Spuentrup E (2010) Molecular MRI of atherosclerosis: from mouse to man. Medicamundi 54:14Google Scholar
  171. 171.
    Thukkani AK, Glaus C, Welch MJ (2010) Molecular imaging of vascular inflammation with nanoparticles. Curr Cardiovasc Imaging Rep 3:151–161Google Scholar
  172. 172.
    McAteer MA, Akhtar AM, von Zuhr Muhlen C, Choudhury RP (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27PubMedCentralPubMedGoogle Scholar
  173. 173.
    Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, Moldovan NI, Ferrari M, Lee SC (2007) Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9:719–727PubMedGoogle Scholar
  174. 174.
    Ferrara DE, Glaus C, Taylor WR (2008) Targeting vascular epitopes using quantum dots. Nanoparticles in biomedical imaging. Fundam Biomed Tech 102:443–461Google Scholar
  175. 175.
    Jayagopal A, Russ PK, Haselton FR (2007) Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug Chem 18:1424–1433PubMedCentralPubMedGoogle Scholar
  176. 176.
    Kahn E, Vejux A, Menetrier F, Maiza C, Hammann A, Sequeira-Le GA, Frouin F, Tourneur Y, Brau F, Riedinger JM, Steinmetz E, Todd-Pokropek A, Lizard G (2006) Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy. Anal Quant Cytol Histol 28:14–26PubMedGoogle Scholar
  177. 177.
    Prinzen L, Miserus RJHM, Dirksen A, Hackend TM, Deckers N, Bitsch NJ, Megens RT, Douma K, Heemskerk JW, Kooi ME, Frederik PM, Slaaf DW, van Zandvoort MA, Reutelingsperger CP (2007) Optical and magnetic resonance imaging of cell death and platelet activation using Annexin A5-functionalized quantum dot. Nano Lett 7:93–100PubMedGoogle Scholar
  178. 178.
    Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6PubMedGoogle Scholar
  179. 179.
    Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321PubMedGoogle Scholar
  180. 180.
    Edelman ER, Adams DA, Karnovsky MJ (1990) Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci U S A 87:3773–3777PubMedCentralPubMedGoogle Scholar
  181. 181.
    Villa AE, Guzman LA, Chen W, Golomb G, Levy RJ, Topol EJ (1994) Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest 93:1243–1249PubMedCentralPubMedGoogle Scholar
  182. 182.
    Nathan A, Nugent MA, Edelman ER (1995) Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci U S A 92:8130–8134PubMedCentralPubMedGoogle Scholar
  183. 183.
    Nugent HM, Rogers C, Edelman ER (1999) Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res 84:384–391PubMedGoogle Scholar
  184. 184.
    Wilensky RL, March KL, Gradus-Pizlo I et al (1995) Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am Heart J 129:852–859PubMedGoogle Scholar
  185. 185.
    Zhang L, Keogh S, Rickard CM (2013) Reducing the risk of infection associated with vascular access devices through nanotechnology: a perspective. Int J Nanomed 8:4453–4466Google Scholar
  186. 186.
    Harris DL, Graffagnini MJ (2007) Nanomaterials in medical devices: a snapshot of markets, technologies and companies. Nanotechnol Law Business 4:415–422Google Scholar
  187. 187.
    Martinez AW, Chaikof EL (2011) Microfabrication and nanotechnology in stent design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:256–268PubMedCentralPubMedGoogle Scholar
  188. 188.
    McDowell G, Slevin M, Krupinski J (2011) Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective. Vasc Cell 3:8, PubMedCentralPubMedGoogle Scholar
  189. 189.
    Yin R-X, Yang D-Z, Wu J-Z (2014) Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 4:175–200PubMedCentralPubMedGoogle Scholar
  190. 190.
    Goh D, Tan A, Farhatnia Y, Rajadas J, Alavijeh MS, Seifalian AM (2013) Nanotechnology-based gene-eluting stents. Mol Pharm 10:1279–1298PubMedGoogle Scholar
  191. 191.
    Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007) Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45:327–336PubMedGoogle Scholar
  192. 192.
    de Mel A, Naghavi N, Cousins BG, Clatworthy I, Hamilton G, Darbyshire A, Seifalian AM (2014) Nitric oxide-eluting nanocomposite for cardiovascular implants. J Mater Sci Mater Med 25:917–929PubMedGoogle Scholar
  193. 193.
    Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J (2011) Shape-specific polymeric nanomedicine: emerging opportunities and challenges. Exp Biol Med 236:20–29Google Scholar
  194. 194.
    Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9PubMedCentralPubMedGoogle Scholar
  195. 195.
    Shah S, Liu Y, Hu W, Gao J (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11:919–928PubMedCentralPubMedGoogle Scholar
  196. 196.
    Charoenphol P, Huang RB, Eniola-Adefeso O (2010) Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:1392–1402PubMedGoogle Scholar
  197. 197.
    Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:1–9Google Scholar
  198. 198.
    Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33:179–190PubMedGoogle Scholar
  199. 199.
    Skorczewski T, Erickson LC, Fogelson AL (2013) Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations. Biophys J 104:1764–1772PubMedCentralPubMedGoogle Scholar
  200. 200.
    Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP, Ataullakhanov FI (2011) Finite platelet size could be responsible for platelet margination effect. Biophys J 101:1835–1843PubMedCentralPubMedGoogle Scholar
  201. 201.
    Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler Thromb Vasc Biol 8:819–824Google Scholar
  202. 202.
    Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998PubMedCentralPubMedGoogle Scholar
  203. 203.
    Daum N, Tscheka C, Neumeyer A, Schneider M (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:52–65PubMedGoogle Scholar
  204. 204.
    Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495PubMedCentralPubMedGoogle Scholar
  205. 205.
    Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23PubMedCentralPubMedGoogle Scholar
  206. 206.
    Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 104:11901–11904PubMedCentralPubMedGoogle Scholar
  207. 207.
    Doshi N, Orje JN, Molins B, Smith JW, Mitragorti S, Ruggeri ZM (2012) Platelet mimetic particles for targeting thrombi inflowing blood. Adv Mater 24:3864–3869PubMedCentralPubMedGoogle Scholar
  208. 208.
    Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362PubMedGoogle Scholar
  209. 209.
    Siepmann J, Siepmann F (2013) Mathematical model of drug dissolution. Int J Pharm 453:12–24PubMedGoogle Scholar
  210. 210.
    Peppas NA, Narasimhan B (2014) Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J Control Release 190:75PubMedGoogle Scholar
  211. 211.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670PubMedGoogle Scholar
  212. 212.
    Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10:197–209PubMedGoogle Scholar
  213. 213.
    Shum P, Kim JM, Thompson DH (2001) Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 53:273–284PubMedGoogle Scholar
  214. 214.
    Paasonen L, Sipilä T, Subrizi A, Laurinmäki P, Butcher SJ, Rappolt M, Yaghmur A, Urtti A, Yliperttula M (2010) Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release 147:136–143PubMedGoogle Scholar
  215. 215.
    Peiris PM, Toy R, Abramowski A, Vicente P, Tucci S, Bauer L, Mayer A, Tam M, Doolittle E, Pansky J, Tran E, Lin D, Schiemann WP, Ghaghada KB, Griswold MA, Karathanasis E (2014) Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. J Control Release 173:51–58PubMedGoogle Scholar
  216. 216.
    Marsh JN, Senpan A, Hu G, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond) 2:533–543Google Scholar
  217. 217.
    Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif SA, Bhatta D, Coskun AU, Feldman CL, Wagner DD, Ingber DE (2012) Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337:738–742PubMedGoogle Scholar
  218. 218.
    Holme MN, Fedotenko IA, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon PL, Ziegler A, Müller B, Saxer T, Zumbuehl A (2012) Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 7:536–543PubMedGoogle Scholar
  219. 219.
    Modery-Pawlowski CL, Sen Gupta A (2014) Heteromultivalent ligand-decoration for actively targeted nanomedicine. Biomaterials 35:2568–2579PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations