Skip to main content

A Simplified and Rapid Method for the Isolation and Transfection of Arabidopsis Leaf Mesophyll Protoplasts for Large-Scale Applications

  • Protocol
Plant Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1363))

Abstract

Arabidopsis leaf mesophyll protoplasts constitute an important and versatile tool for conducting cell-based experiments to analyze the functions of distinct signaling pathways and cellular machineries using proteomic, biochemical, cellular, genetic, and genomic approaches. Thus, the methods for protoplast isolation and transfection have been gradually improved to achieve efficient expression of genes of interest. Although many well-established protocols have been extensively tested, their successful application is sometimes limited to researchers with a high degree of skill and experience in protoplasts handling. Here we present a detailed method for the isolation and transfection of Arabidopsis mesophyll protoplasts, in which many of the time-consuming and critical steps present in the current protocols have been simplified. The method described is fast, simple, and leads to high yields of competent protoplasts allowing large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  CAS  PubMed  Google Scholar 

  2. Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  3. Walter M, Chaban C, Schutze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  4. Ehlert A, Weltmeier F, Wang X et al (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  CAS  PubMed  Google Scholar 

  5. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  6. Worley CK, Zenser N, Ramos J et al (2000) Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 21:553–562

    Article  CAS  PubMed  Google Scholar 

  7. Tao LZ, Cheung AY, Nibau C et al (2005) RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell 17:2369–2383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang S, Tiwari SB, Hagen G et al (2005) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17:1979–1993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Im JH, Yoo SD (2014) Transient expression in Arabidopsis leaf mesophyll protoplast system for cell-based functional analysis of MAPK cascades signaling. Methods Mol Biol 1171:3–12

    Article  PubMed  Google Scholar 

  10. Martinho C, Confraria A, Elias CA et al (2015) Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Mol Plant 8:261–275

    Google Scholar 

  11. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Masani MYA, Noll GA, Parveez GKA et al (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS One 9:e96831

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kanzaki H, Yoshida K, Saitoh H et al (2014) Protoplast cell death assay to study Magnaporthe oryzae AVR gene function in rice. Methods Mol Biol 1127:269–275

    Article  PubMed  Google Scholar 

  14. Fraiture M, Zheng X, Brunner F (2014) An Arabidopsis and tomato mesophyll protoplast system for fast identification of early MAMP-triggered immunity-suppressing effectors. Methods Mol Biol 1127:213–230

    Article  PubMed  Google Scholar 

  15. Vanden BR, Demedts B, Vanderhaeghen R et al (2013) Transient expression assays in tobacco protoplasts. Methods Mol Biol 1011:227–239

    Article  Google Scholar 

  16. Maintz J, Cavdar M, Tamborski J et al (2014) Comparative analysis of MAMP-induced calcium influx in Arabidopsis seedlings and protoplasts. Plant Cell Physiol 55:1813–1825

    Article  PubMed  Google Scholar 

  17. Jiang F, Zhu J, Liu HL (2013) Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250:1231–1238

    Article  CAS  PubMed  Google Scholar 

  18. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963

    Article  Google Scholar 

  19. Wu FH, Shen SC, Lee LY et al (2009) Tape-Arabidopsis sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cho YH, Yoo SD (2009) Expression of epitope-tagged proteins in Arabidopsis leaf mesophyll protoplasts. Methods Mol Biol 657:33–42

    Article  Google Scholar 

  21. Castano-Miquel L, Segui J, Manrique S et al (2013) Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Mol Plant 6:1646–1660

    Article  CAS  PubMed  Google Scholar 

  22. Kurepa JJ, Walker JMJ, Smalle JJ et al (2003) The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem 278:6862–6872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (ERC-2007-StG-205927) to M.L. Lois and the Beatriu de Pinós post-doctoral grant of the Generalitat de Catalunya, co-founded by the European Commission through the Marie Curie-COFUND actions, to A.L. Schapire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaldo L. Schapire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schapire, A.L., Lois, L.M. (2016). A Simplified and Rapid Method for the Isolation and Transfection of Arabidopsis Leaf Mesophyll Protoplasts for Large-Scale Applications. In: Botella, J., Botella, M. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 1363. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3115-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3115-6_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3114-9

  • Online ISBN: 978-1-4939-3115-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics