Skip to main content

DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants

  • Protocol

Part of the Methods in Molecular Biology book series (MIMB,volume 1363)

Abstract

Chromatin immunoprecipitation (ChIP) allows the precise identification of genomic loci that physically interact with a protein of interest, whether that protein is a transcription factor, a core polymerase, a histone, or other chromatin-associated protein. In short, tissue is first cross-linked to freeze a population of DNA-protein interactions at a stage of interest. Chromatin is then extracted, fragmented, and incubated with a specific antibody against the protein of interest. Next, the resultant DNA-protein complexes are immunoprecipitated and captured using beads that bind to the antibody constant region. Samples are finally reverse cross-linked to separate the bound fragments and the DNA is purified. This DNA is analyzed by quantitative PCR for enrichment of genomic regions expected to be bound by the protein under study. The protocol detailed in this chapter has been successfully applied in the identification of target genes for seven transcriptional regulators of diverse classes involved in Arabidopsis thaliana floral transition.

Key words

  • Chromatin immunoprecipitation
  • ChIP
  • ChIP-seq
  • ChIP-chip
  • Transcription factor
  • Antibody
  • Direct target

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CrossRef  CAS  PubMed  Google Scholar 

  3. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    CrossRef  CAS  PubMed  Google Scholar 

  4. Thibaud-Nissen F, Wu H, Richmond T et al (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J 47:152–162

    CrossRef  CAS  PubMed  Google Scholar 

  5. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614

    CrossRef  CAS  PubMed  Google Scholar 

  6. Haring M, Offermann S, Danker T et al (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    CrossRef  PubMed Central  PubMed  Google Scholar 

  7. Morohashi K, Casas MI, Falcone Ferreyra ML et al (2012) A genome-wide regulatory framework identifies maize pericarp color1 controlled genes. Plant Cell 24:2745–2764

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  8. He G, Chen B, Wang X et al (2013) Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14:R57

    CrossRef  PubMed Central  PubMed  Google Scholar 

  9. Ito Y, Kitagawa M, Ihashi N et al (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55:212–223

    CrossRef  CAS  PubMed  Google Scholar 

  10. Ricardi MM, González RM, Iusem ND (2010) Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato. Plant Methods 6:11

    CrossRef  PubMed Central  PubMed  Google Scholar 

  11. Fujisawa M, Nakano T, Shima Y et al (2013) A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25:371–386

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  12. Malone BM, Tan F, Bridges SM et al (2011) Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS One 6:e25260

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  13. Oh E, Zhu J-Y, Wang Z-Y (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhu J-Y, Sun Y, Wang Z-Y (2012) Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol Biol 876:173–188

    CrossRef  CAS  PubMed  Google Scholar 

  15. Shamimuzzaman M, Vodkin L (2013) Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. BMC Genomics 14:477

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu L, Missirian V, Zinkgraf M et al (2014) Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees. BMC Genomics 15(Suppl 5):S3

    CrossRef  PubMed Central  PubMed  Google Scholar 

  17. Yant L (2012) Genome-wide mapping of transcription factor binding reveals developmental process integration and a fresh look at evolutionary dynamics. Am J Bot 99:277–290

    CrossRef  CAS  PubMed  Google Scholar 

  18. Heyndrickx KS, Van de Velde J, Wang C et al (2014) A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Plant Cell 26:3894. doi:10.1105/tpc.114.130591

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mathieu J, Yant LJ, Mürdter F et al (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148

    CrossRef  PubMed Central  PubMed  Google Scholar 

  20. Moyroud E, Minguet EG, Ott F et al (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23:1293–1306

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yant L, Mathieu J, Dinh TT et al (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  22. Posé D, Verhage L, Ott F et al (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414–417

    CrossRef  PubMed  Google Scholar 

  23. Immink RGH, Posé D, Ferrario S et al (2012) Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol 160:433–449

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DP was supported by a contract “Ramón y Cajal” (code RYC-2013-12699) from the Ministerio de Economía y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Posé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Posé, D., Yant, L. (2016). DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants. In: Botella, J., Botella, M. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 1363. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3115-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3115-6_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3114-9

  • Online ISBN: 978-1-4939-3115-6

  • eBook Packages: Springer Protocols