Advertisement

Competitive Index: Mixed Infection-Based Virulence Assays for Genetic Analysis in Pseudomonas syringae-Plant Interactions

  • Alberto P. Macho
  • José S. Rufián
  • Javier Ruiz-Albert
  • Carmen R. BeuzónEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1363)

Abstract

When studying bacterial plant pathogens, the genetic analysis of the contribution of virulence factors to the infection process has traditionally been hindered by their high degree of functional redundancy. In recent years, it has become clear that the use of competitive index in mixed infections provides an accurate and sensitive manner of establishing virulence phenotypes for mutants for which other assays have failed. Such increases in sensitivity and accuracy are due to the direct comparison between the respective growths of the co-inoculated strains within the same infection, each strain replicating as they would in individual infections. Interferences between the co-inoculated strains must be therefore avoided using the appropriate experimental settings. In this chapter, we will present the optimal experimental conditions to achieve maximum sensitivity on virulence assays using the phytopathogenic bacterium Pseudomonas syringae, as well as some additional considerations to ensure the correct interpretations of the results.

Key words

Mixed infection Competitive index Virulence Immunity Resistance Genetic analysis 

Notes

Acknowledgements

The work was supported by Project Grants from the Ministerio de Economia y Competitividad (MINECO, Spain; BIO2012-35641) and Junta de Andalucía (Spain; P07-CVI-2605) to C.R. Beuzón. J.S. Rufián is currently supported by a FPI fellowship to a Project Grant to E.R. Bejarano (MICINN, Spain; AGL2010-22287-C02-2). The work was co-funded by Fondos Europeos de Desarrollo Regional (FEDER).

References

  1. 1.
    Macho AP, Zumaquero A, Ortiz-Martin I, Beuzon CR (2007) Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Mol Plant Pathol 8(4):437–450. doi: 10.1111/j.1364-3703.2007.00404.x CrossRefPubMedGoogle Scholar
  2. 2.
    Macho AP, Zumaquero A, Gonzalez-Plaza JJ, Ortiz-Martin I, Rufian JS, Beuzon CR (2012) Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. PLoS One 7(4), e35871. doi: 10.1371/journal.pone.0035871 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Matas IM, Lambertsen L, Rodriguez-Moreno L, Ramos C (2012) Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. New Phytol 196(4):1182–1196. doi: 10.1111/j.1469-8137.2012.04357.x CrossRefPubMedGoogle Scholar
  4. 4.
    Rodriguez-Moreno L, Pineda M, Soukupova J, Macho AP, Beuzon CR, Baron M, Ramos C (2008) Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynth Res 96(1):27–35. doi: 10.1007/s11120-007-9278-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Zumaquero A, Macho AP, Rufian JS, Beuzon CR (2010) Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 192(17):4474–4488. doi: 10.1128/JB.00260-10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Macho AP, Ruiz-Albert J, Tornero P, Beuzon CR (2009) Identification of new type III effectors and analysis of the plant response by competitive index. Mol Plant Pathol 10(1):69–80. doi: 10.1111/j.1364-3703.2008.00511.x CrossRefPubMedGoogle Scholar
  7. 7.
    Macho AP, Guevara CM, Tornero P, Ruiz-Albert J, Beuzon CR (2010) The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity. New Phytologist 187(4):1018–1033. doi: 10.1111/j.1469-8137.2010.03381.x CrossRefPubMedGoogle Scholar
  8. 8.
    Macho AP, Beuzon CR (2010) Insights into plant immunity signalling: the bacterial competitive index angle. Plant Signal Behav 5(12):1590–1593CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Macho AP, Guidot A, Barberis P, Beuzon CR, Genin S (2010) A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Mol Plant-Microbe Interact 23(9):1197–1205. doi: 10.1094/MPMI-23-9-1197 CrossRefPubMedGoogle Scholar
  10. 10.
    Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C, Zhou JM (2012) A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485(7396):114–118. doi: 10.1038/nature10962 CrossRefPubMedGoogle Scholar
  11. 11.
    Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1(2):190–206CrossRefPubMedGoogle Scholar
  12. 12.
    Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300PubMedPubMedCentralGoogle Scholar
  13. 13.
    Freter R, Allweiss B, O’Brien PC, Halstead SA, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect Immun 34(1):241–249PubMedPubMedCentralGoogle Scholar
  14. 14.
    Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84(9):2833–2837CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alberto P. Macho
    • 2
  • José S. Rufián
    • 1
  • Javier Ruiz-Albert
    • 1
  • Carmen R. Beuzón
    • 1
    Email author
  1. 1.Dpto. Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y MediterráneaUniversidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC)MálagaSpain
  2. 2.Shanghai Center for Plant Stress BiologyChinese Academy of SciencesShanghaiChina

Personalised recommendations