Advertisement

Analyses of Plant UDP-Dependent Glycosyltransferases to Identify Their Volatile Substrates Using Recombinant Proteins

  • Yusuke Kamiyoshihara
  • Denise M. Tieman
  • Harry J. KleeEmail author
Protocol
  • 3k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1363)

Abstract

Glycosylation is one of major modifications for plant secondary metabolites. In the case of volatile compounds, glycosylation makes them nonvolatile and odorless. Identification of UDP-dependent glycosyltransferases responsible for volatile glycosylation is essential to understand the regulatory mechanism of volatile release from plant tissues. Here, we describe an efficient protocol to find possible combinations of volatiles/glycosyltransferases using tomato (Solanum lycopersicum) enzymes expressed in Escherichia coli. The presented method requires a basic gas chromatography system and conventional laboratory tools.

Key words

UGT Volatiles Glycosides Screening Gas chromatography Escherichia coli 

Notes

Acknowledgments

This work was supported by grants from the National Science Foundation to H.J.K. (IOS-27 0923312).

References

  1. 1.
    Bowles D, Lim EK, Poppenberger B et al (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597CrossRefPubMedGoogle Scholar
  2. 2.
    Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56CrossRefPubMedGoogle Scholar
  3. 3.
    Tikunov YM, Molthoff J, de Vos RC et al (2013) NON-smoky glycosyltransferase1 prevents the release of smoky aroma from tomato fruit. Plant Cell 25:3067–3078CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yauk YK, Ged C, Wang MY et al (2014) Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. Plant J 80:317–330CrossRefPubMedGoogle Scholar
  5. 5.
    Yonekura-Sakakibara K, Hanada K (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66:182–193CrossRefPubMedGoogle Scholar
  6. 6.
    Caputi L, Malnoy M, Goremykin V et al (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042CrossRefPubMedGoogle Scholar
  7. 7.
    Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174CrossRefPubMedGoogle Scholar
  8. 8.
    Palcic MM, Sujino K (2001) Assays forglycosyltransferases. Trends Glycosci Glyc 13:361–370Google Scholar
  9. 9.
    Wagner GK, Pesnot T (2010) Glycosyltransferases and their assays. ChemBioChem 11:1939–1949CrossRefPubMedGoogle Scholar
  10. 10.
    Lowery RG, Kleman-Leyer K (2006) Transcreener (TM): screening enzymes involved in covalent regulation. Expert Opin Ther Targets 10:179–190CrossRefPubMedGoogle Scholar
  11. 11.
    Wongkongkatep J, Miyahara Y, Ojida A et al (2006) Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew Chem Int Ed 45:665–668CrossRefGoogle Scholar
  12. 12.
    Yang M, Brazier M, Edwards R et al (2005) High-throughput mass-spectroscopy monitoring for multisubstrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 6:346–357CrossRefPubMedGoogle Scholar
  13. 13.
    Deng C, Chen RR (2004) A pH-sensitive assay for galactosyltransferase. Anal Biochem 330:219–226CrossRefPubMedGoogle Scholar
  14. 14.
    Tartoff KD, Hobbs CA (1987) Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus 9:12Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yusuke Kamiyoshihara
    • 1
  • Denise M. Tieman
    • 1
  • Harry J. Klee
    • 1
    Email author
  1. 1.Horticultural Sciences DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations