Advertisement

Suppressor Screens in Arabidopsis

  • Xin Li
  • Yuelin ZhangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1363)

Abstract

Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses.

Key words

Suppressor screen EMSmutagenesis Arabidopsis 

Notes

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program, the Canadian Foundation of Innovation (CFI), and the University of British Columbia for supporting the various genetic screens we have conducted in the past decade. Ms. Kaeli Johnson is warmly thanked for critical reading of the manuscript.

References

  1. 1.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedCentralPubMedGoogle Scholar
  2. 2.
    Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801CrossRefPubMedGoogle Scholar
  3. 3.
    Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 110(1):17–72PubMedCentralPubMedGoogle Scholar
  4. 4.
    Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921. doi: 10.1111/j.1365-313X.2009.04086.x CrossRefPubMedGoogle Scholar
  5. 5.
    Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7(7):524–536. doi: 10.1038/nrg1893 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang Y, Yang Y, Fang B, Gannon P, Ding P, Li X (2010) Arabidopsis snc2-1D activates receptor-like protein-mediated immunity transduced through WRKY70. Plant Cell 22(9):3153–3163. doi: 10.1105/tpc.110.074120, tpc.110.074120 [pii]PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Bi D, Cheng YT, Li X, Zhang Y (2010) Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. Plant Physiol 153(4):1771–1779PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Yang Y, Zhang Y, Ding P, Johnson K, Li X, Zhang Y (2012) The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol 159(4):1857–1865. doi: 10.1104/pp. 112.197152 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Germain H, Qu N, Cheng YT, Lee E, Huang Y, Dong OX, Gannon P, Huang S, Ding P, Li Y, Sack F, Zhang Y, Li X (2010) MOS11: a new component in the mRNA export pathway. PLoS Genet 6(12):e1001250. doi: 10.1371/journal.pgen.1001250 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Xu F, Xu S, Wiermer M, Zhang Y, Li X (2012) The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. Plant J 70(6):916–928. doi: 10.1111/j.1365-313X.2012.04906.x CrossRefPubMedGoogle Scholar
  11. 11.
    Li X, Clarke JD, Zhang Y, Dong X (2001) Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact 14(10):1131–1139CrossRefPubMedGoogle Scholar
  12. 12.
    Kim Y, Schumaker KS, Zhu JK (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323:101–103. doi: 10.1385/1-59745-003-0:101 PubMedGoogle Scholar
  13. 13.
    Zhang Y, Glazebrook J, Li X (2007) Identification of components in disease-resistance signaling in Arabidopsis by map-based cloning. Methods Mol Biol 354:69–78PubMedGoogle Scholar
  14. 14.
    Austin RS, Chatfield SP, Desveaux D, Guttman DS (2014) Next-generation mapping of genetic mutations using bulk population sequencing. Methods Mol Biol 1062:301–315. doi: 10.1007/978-1-62703-580-4_17 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BotanyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of BotanyUniversity of British ColumbiaVancouverCanada

Personalised recommendations