Skip to main content

Statistical Method for Integrative Platform Analysis: Application to Integration of Proteomic and Microarray Data

  • Protocol
Statistical Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1362))

Abstract

To perform integrative analysis on multiple genomic data sources, we propose to use Fisher’s combined probability test for consolidated inference. The method combines the individual p-values from different data sources and constructs a chi-square test statistics for the overall significance. This method is valid to combine results across independent data sources. We further improve the method to accommodate the scenario that the data sources are dependent or the data samples are too small to obtain valid p-values through exact distributions. The proposed method is convenient to use in practice and is robust to distributional assumptions and small sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reif D, White B, Moore J (2004) Integrated analysis of genetic, genomic and proteomic data. Expert Rev Proteomics 1:67–75

    Article  CAS  PubMed  Google Scholar 

  2. Hamid J, Hu P, Roslin M et al (2009) Data integration in genetics and genomics: methods and challenges. Human Genomics and Proteomics 2009, Article ID 869093

    Google Scholar 

  3. Lanckriet G, De Bie T, Cristianini N et al (2004) A statistical framework for genomic data fusion. Bioinformatics 20:2626–2635

    Article  CAS  PubMed  Google Scholar 

  4. Daemen A, Gevaert O, De Bie T et al (2008) Integrating microarray and proteomics data to predict the response on cetuximab in patients with rectal cancer. Pac Symp Biocomput 13:166–177

    Google Scholar 

  5. Buness A, Ruschhaupt M, Kuner R et al (2009) Classification across gene expression microarray studies. BMC Bioinformatics 10:453

    Article  PubMed Central  PubMed  Google Scholar 

  6. Tian Q, Stepaniants S, Mao M et al (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3:960–969

    Article  CAS  PubMed  Google Scholar 

  7. Bussey K, Chin K, Lababidi S et al (2006) Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol Cancer Ther 5:853–867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Adourian A, Jennings E, Balasubramanian R et al (2003) Correlation network analysis for data integration and biomarker selection. Royal Soc Chem 4:249–259

    Google Scholar 

  9. Ma Y, Ding Z, Qian Y et al (2009) An integrative genomic and proteomic approach to chemosensitivity prediction. Int J Oncol 34:107–115

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Aerts S, Lambrechts D, Maity S et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544

    Article  CAS  PubMed  Google Scholar 

  11. Rhodes D, Yu J, Shanker K et al (2004) Large-scale meta analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 25:9309–9314

    Article  Google Scholar 

  12. Wu S, Xu Y, Feng Z et al (2012) Multiple-platform data integration method with application to combined analysis of microarray and proteomic data. BMC Bioinformatics 13:320

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  14. Brierley N, Tippetts T, Cawley P (2014) Data fusion for automated non-destructive inspection. Proc R Soc A 470, Issue 2167

    Google Scholar 

  15. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B 57:289–300

    Google Scholar 

  16. Gao X (2006) Construction of null statistics in permutation based multiple testing for multi-factorial microarray experiments. Bioinformatics 22:1486–1494

    Article  CAS  PubMed  Google Scholar 

  17. Jayapal K, Philp R, Kok Y et al (2008) Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One 7:e2097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gao, X. (2016). Statistical Method for Integrative Platform Analysis: Application to Integration of Proteomic and Microarray Data. In: Jung, K. (eds) Statistical Analysis in Proteomics. Methods in Molecular Biology, vol 1362. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3106-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3106-4_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3105-7

  • Online ISBN: 978-1-4939-3106-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics