Skip to main content

Use of the pBUTR Reporter System for Scalable Analysis of 3′ UTR-Mediated Gene Regulation

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

  • 6544 Accesses

Abstract

Posttranscriptional control of mRNA subcellular localization, stability, and translation is a central aspect of gene regulation and expression. Much of this control is mediated via recognition of a given mRNA transcript’s 3′ untranslated region (UTR) by microRNAs and RNA-binding proteins. Here we describe how a novel, scalable piggyBac-based vector, pBUTR, can be utilized for analysis of 3′ UTR-mediated posttranscriptional gene regulation (PTGR) both in vitro and in vivo. This vector is specifically designed to express a selection marker, a control reporter, and an experimental reporter from three independent transcription units. Expression of spliced reporter transcripts from medium-copy non-viral promoter elements circumvents several potential confounding factors associated with saturation and stability, while stable integration of these reporter and selection elements in the context of a DNA transposon facilitates experimental reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  2. Cloonan N, Forrest AR, Kolle G et al (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    Article  CAS  PubMed  Google Scholar 

  3. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  4. Chen G, Gharib TG, Huang CC et al (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1:304–313

    Article  CAS  PubMed  Google Scholar 

  5. Vogel C, Abreu RS, Ko D et al (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400

    Article  PubMed Central  PubMed  Google Scholar 

  6. Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  7. Jansen RP (2001) mRNA localization: message on the move. Nat Rev Mol Cell Biol 2:247–256

    Article  CAS  PubMed  Google Scholar 

  8. de Moor CH, Meijer H, Lissenden S (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin Cell Dev Biol 16:49–58

    Article  PubMed  Google Scholar 

  9. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126

    Article  CAS  PubMed  Google Scholar 

  10. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  CAS  PubMed  Google Scholar 

  11. Merritt C, Rasoloson D, Ko D et al (2008) 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol 18:1476–1482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Matoulkova E, Michalova E, Vojtesek B et al (2012) The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 9:563–576

    Article  CAS  PubMed  Google Scholar 

  13. Kornblihtt AR, Schor IE, Allo M et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165

    Article  CAS  PubMed  Google Scholar 

  14. Elkon R, Ugalde AP, Agami R (2013) Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 14:496–506

    Article  CAS  PubMed  Google Scholar 

  15. Conne B, Stutz A, Vassalli JD (2000) The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? Nat Med 6:637–641

    Article  CAS  PubMed  Google Scholar 

  16. Shibayama A, Cook EH Jr, Feng J et al (2004) MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. Am J Med Genet B Neuropsychiatr Genet 128B:50–53

    Article  PubMed  Google Scholar 

  17. Chatterjee S, Pal JK (2009) Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 101:251–262

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhury A, Kongchan N, Gengler JP et al (2014) A piggyBac-based reporter system for scalable in vitro and in vivo analysis of 3′ untranslated region-mediated gene regulation. Nucleic Acids Res 42, e86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nakano K, Ando T, Yamagishi M et al (2013) Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication. Microbes Infect 15:491–505

    Article  CAS  PubMed  Google Scholar 

  20. Zufferey R, Donello JE, Trono D et al (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Jahner D, Stuhlmann H, Stewart CL et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  CAS  PubMed  Google Scholar 

  22. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  PubMed  Google Scholar 

  23. Jones S, Peng PD, Yang S et al (2009) Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 20:630–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Xia H, Mao Q, Davidson BL (2001) The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors. Nat Biotechnol 19:640–644

    Article  CAS  PubMed  Google Scholar 

  26. Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  27. Yusa K, Zhou L, Li MA et al (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci U S A 108:1531–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Eggan K, Akutsu H, Loring J et al (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 98:6209–6214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. http://www.hudsonalpha.org/gsl/information/software/bam2fastq.

  30. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cary LC, Goebel M, Corsaro BG et al (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  32. Li MA, Turner DJ, Ning Z et al (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39, e148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ding S, Wu X, Li G et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–478

    Article  CAS  PubMed  Google Scholar 

  34. Wu SC, Meir YJ, Coates CJ et al (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103:15008–15013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nakanishi H, Higuchi Y, Kawakami S et al (2010) piggyBac transposon-mediated long-term gene expression in mice. Mol Ther 18:707–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel R. Neilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chaudhury, A., Neilson, J.R. (2016). Use of the pBUTR Reporter System for Scalable Analysis of 3′ UTR-Mediated Gene Regulation. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics