Single-Molecule Live-Cell Visualization of Pre-mRNA Splicing

  • Robert M. Martin
  • José Rino
  • Ana C. de Jesus
  • Maria Carmo-FonsecaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1358)


Microscopy protocols that allow live-cell imaging of molecules and subcellular components tagged with fluorescent conjugates are indispensable in modern biological research. A breakthrough was recently introduced by the development of genetically encoded fluorescent tags that combined with fluorescence-based microscopic approaches of increasingly higher spatial and temporal resolution made it possible to detect single protein and nucleic acid molecules inside living cells. Here, we describe an approach to visualize single nascent pre-mRNA molecules and to measure in real time the dynamics of intron synthesis and excision.

Key words

Single molecule Live-cell imaging Spinning disk confocal microscopy Splicing Pre-mRNA 



We gratefully acknowledge Tomas Kirchhausen and members of the Kirchhausen lab for advice and support during the development of this protocol. This work was supported by Fundação para a Ciência e Tecnologia, Portugal (PTDC/SAU-GMG/118180/2010; SFRH/BPD/66611/2009), and the Harvard Medical School-Portugal Program in Translational Research and Information.


  1. 1.
    Ellinger PHA (1929) Mikroskopische beobachtungen an lebenden organen mit demonstrationen (Intravitalmikroskopie). Arch Exp Pathol Pharmak 147Google Scholar
  2. 2.
    Heimstädt O (1911) Das fluoreszenzmikroskop. Z Wiss Mikrosk 28:330–337Google Scholar
  3. 3.
    Ploem JS (1967) The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik 68:129–142PubMedGoogle Scholar
  4. 4.
    Rino J, Braga J, Henriques R, Carmo-Fonseca M (2009) Frontiers in fluorescence microscopy. Int J Dev Biol 53:1569–1579CrossRefPubMedGoogle Scholar
  5. 5.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  6. 6.
    Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239CrossRefPubMedGoogle Scholar
  8. 8.
    Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont AS (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700CrossRefPubMedGoogle Scholar
  9. 9.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445CrossRefPubMedGoogle Scholar
  10. 10.
    Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH, Spector DL (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116:683–698CrossRefPubMedGoogle Scholar
  11. 11.
    Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH (2004) Dynamics of single mRNPs in nuclei of living cells. Science 304:1797–1800CrossRefPubMedGoogle Scholar
  12. 12.
    Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M (2013) Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4:1144–1155PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Schmidt U, Basyuk E, Robert MC, Yoshida M, Villemin JP, Auboeuf D, Aitken S, Bertrand E (2011) Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J Cell Biol 193:819–829PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR (2014) Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3Google Scholar
  15. 15.
    O'Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355CrossRefPubMedGoogle Scholar
  16. 16.
    Sauer B (1994) Site-specific recombination: developments and applications. Curr Opin Biotechnol 5:521–527CrossRefPubMedGoogle Scholar
  17. 17.
    Johansson HE, Dertinger D, LeCuyer KA, Behlen LS, Greef CH, Uhlenbeck OC (1998) A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci U S A 95:9244–9249PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E (2003) Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 13:161–167CrossRefPubMedGoogle Scholar
  19. 19.
    Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 10:119–121PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Robert M. Martin
    • 1
  • José Rino
    • 1
  • Ana C. de Jesus
    • 1
  • Maria Carmo-Fonseca
    • 1
    Email author
  1. 1.Faculdade de Medicina, Instituto de Medicina MolecularUniversidade de LisboaLisbonPortugal

Personalised recommendations