Advertisement

Do Mitochondria Play a Central Role in Stress-Induced Somatic Embryogenesis?

  • Birgit Arnholdt-Schmitt
  • Carla Ragonezi
  • Hélia Cardoso
Part of the Methods in Molecular Biology book series (MIMB, volume 1359)

Abstract

This review highlights a four-step rational for the hypothesis that mitochondria play an upstream central role for stress-induced somatic embryogenesis (SE): (1) Initiation of SE is linked to programmed cell death (PCD) (2) Mitochondria are crucially connected to cell death (3) SE is challenged by stress per se (4) Mitochondria are centrally linked to plant stress response and its management. Additionally the review provides a rough perspective for the use of mitochondrial-derived functional marker (FM) candidates to improve SE efficiency. It is proposed to apply SE systems as phenotyping tool for identifying superior genotypes with high general plasticity under severe plant stress conditions.

Key words

Somatic embryogenesis Mitochondria PCD Severe stress Cell reprogramming Phenotype plasticity Phenotyping tool Genotype selection 

Notes

Acknowledgement

This work was supported by FEDER Funds through the Operational Program for competitiveness Factors—COMPETE, and National Funds through FCT under the Strategic Project PEst-OE/AGR/UI0115/2014 and the project FCOMP-01-0124-FEDER-009638 (PTDC/EBB-BIO/099268/2008). The authors are thankful to the Portuguese FCT—Foundation for Science and Technology (FCT) for the support given under the program POPH—Programa Operacional Potencial Humano (Ciência 2008: C2008-UE/ICAM/06) and also to ICAAM for the support given to H.C. (BPD UÉvora ICAAM INCENTIVO AGR UI0115) and C.R. (BTI_Uevora_ICAAM_PTDC_EBB-BIO_99268_2008).

References

  1. 1.
    Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788CrossRefPubMedGoogle Scholar
  2. 2.
    Welchen E, García L, Mansilla N, Gonzalez DH (2014) Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front Plant Sci 4:551PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Scorrano L (2014) Keeping mitochondria and ER together: a matter of life, death and neurodegeneration (349.2). FASEB J 28(1):Supplement 349.2Google Scholar
  4. 4.
    Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J (2014) Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol Plant 7:1075–1093CrossRefPubMedGoogle Scholar
  5. 5.
    Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotech 13:12–13CrossRefGoogle Scholar
  6. 6.
    Fehér A (2014) Somatic embryogenesis–stress-induced remodeling of plant cell fate. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2014.07.005 PubMedGoogle Scholar
  7. 7.
    Gilbert SF (2014) Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J Biosci 39:201–209CrossRefPubMedGoogle Scholar
  8. 8.
    Arnholdt-Schmitt B, Valadas V, Doering M (2014) Functional marker development is challenged by the ubiquity of endophytes – a practical perspective. Briefings on Functional Genomics. doi: 10.1093/bfgp/elu049
  9. 9.
    Tsimilli-Michael M, Krüger HJ, Strasser RJ (1996) About the perpetual state changes in plants approaching harmony with their environment. Arch Sci 49:173–203Google Scholar
  10. 10.
    Hansen LD, Criddle RS, Smith BN (2005) Calorespirometry in plant Biology. In: Lambers H, Ribas-Carbo M (eds) Plant Respiration. Springer, Netherlands, pp 17–30CrossRefGoogle Scholar
  11. 11.
    Gaspar T, Franck T, Bisbis B (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285CrossRefGoogle Scholar
  12. 12.
    Martín ML, Lechner L, Zabaleta EJ, Salerno GL (2013) A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis. Planta 237(3):813–822CrossRefPubMedGoogle Scholar
  13. 13.
    Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Cardoso HG, Arnholdt-Schmitt B (2013) Functional marker development across species in selected traits. In: Lübberstedt T, Varshney RK (eds) Diagnostics in Plant Breeding. Springer, Dordrecht, pp 467–515CrossRefGoogle Scholar
  15. 15.
    Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical–basal patterning. J Exp Bot 65(5):1343–1360CrossRefPubMedGoogle Scholar
  16. 16.
    Arnholdt-Schmitt B (1995) Physiological aspects of genome variability in tissue culture. II growth phase-dependent quantitative variability of repetitive BstNI fragments of primary cultures of Daucus carota L. Theor Appl Genet 91:816–823PubMedGoogle Scholar
  17. 17.
    Arnholdt-Schmitt B, Herterich S, Neumann KH (1995) Physiological aspects of genome variability in tissue culture. I. Growth phase-dependent differential DNA methylation of the carrot genome (Daucus carota L.) during primary culture. Theor Appl Genet 91:809–815PubMedGoogle Scholar
  18. 18.
    Grieb B, Schäfer F, Imani J, Nezamabadi Mashayekhi K, Arnholdt-Schmitt B, Neumann KH (1997) Changes in soluble proteins and phytohormone concentrations of cultured carrot petiole explants during induction of somatic embryogenesis (Daucus carota L.). Angew Bot 71:94–103Google Scholar
  19. 19.
    Arnholdt-Schmitt B (2004) Stress-induced cell reprogramming. A role for global genome regulation? Plant Physiol 136:2579–2586PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  21. 21.
    Ruffoni B, Savona M (2013) Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture. Hort Environ Biotechnol 54:191–205CrossRefGoogle Scholar
  22. 22.
    Frederico AM, Campos MD, Cardoso HG, Imani J, Arnholdt-Schmitt B (2009) Alternative oxidase involvement in Daucus carota L. somatic embryogenesis. Physiol Plant 137:498–508Google Scholar
  23. 23.
    McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280CrossRefGoogle Scholar
  24. 24.
    Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667CrossRefPubMedGoogle Scholar
  25. 25.
    Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411PubMedGoogle Scholar
  26. 26.
    Petrussa E, Bertolini A, Casolo V, Krajňáková J, Macrì F, Vianello A (2009) Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba. Planta 231:93–107CrossRefPubMedGoogle Scholar
  27. 27.
    Filonova LH, Bozhkov PV, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264Google Scholar
  28. 28.
    Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajňáková J, Patui S, Braidot E, Macrì F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252CrossRefGoogle Scholar
  29. 29.
    Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444CrossRefPubMedGoogle Scholar
  30. 30.
    Casolo V, Petrussa E, Krajňáková J, Macrì F, Vianello A (2005) Involvement of the mitochondrial KATP+ channel in H2O2-or NO-induced programmed death of soybean suspension cell cultures. J Exp Bot 56:997–1006CrossRefPubMedGoogle Scholar
  31. 31.
    Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485CrossRefPubMedGoogle Scholar
  32. 32.
    Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908–1920PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Vanlerberghe GC, Robson CA, Yip JYH (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway downregulating the cytochrome pathway prevents programmed cell death. Plant Physiol 129:1829–1842PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:473–482Google Scholar
  35. 35.
    Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crc Cr Rev Plant Sci 29:36–57CrossRefGoogle Scholar
  36. 36.
    Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628CrossRefPubMedGoogle Scholar
  37. 37.
    Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo S, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507CrossRefPubMedGoogle Scholar
  40. 40.
    Pandey DK, Chaudhary B (2014) Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). Am J Plant Sci 5:80–102CrossRefGoogle Scholar
  41. 41.
    Zheng Q, Perry SE (2014) Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of AGAMOUS-Like15 and AGAMOUS-Like18. Plant Physiol 164:1365–1377PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis Root. Dev Cell 21(4):770–782PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K, Kosyakova N, Ewers E, Nelle H, Liehr T, Volleth M, Weise A (2010) Early embryonic chromosome instability results in stable mosaic pattern in human tissues. PLoS One 5:e9591PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó J, Becker JD, Martienssen RA (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Żmieńko A, Samelak A, Kozłowski P, Figlerowicz M (2013) Copy number polymorphism in plant genomes. Theor Appl Genet 127:1–18PubMedCentralPubMedGoogle Scholar
  46. 46.
    Grafi G, Barak S (2014) Stress induces cell dedifferentiation in plants. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2014.07.015 Google Scholar
  47. 47.
    Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169CrossRefPubMedGoogle Scholar
  48. 48.
    Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta 1833:213–224CrossRefPubMedGoogle Scholar
  50. 50.
    Ruberti C, Brandizzi F (2014) Conserved and plant-unique strategies for overcoming endoplasmic reticulum stress. Front Plant Sci 5:69PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10:12–31PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, Inzé D (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152:226–244PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Jacoby RP, Taylor NL, Millar AH (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623CrossRefPubMedGoogle Scholar
  55. 55.
    Lisanti S, Tavecchio M, Chae YC, Liu Q, Brice AK, Thakur ML, Languino LR, Altieri DC (2014) Deletion of the mitochondrial chaperone TRAP-1 uncovers global reprogramming of metabolic networks. Cell Rep 8:671–677PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Matsoukas IG (2014) Attainment of reproductive competence, phase transition, and quantification of juvenility in mutant genetic screens. Front Plant Sci 5:32PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Scorrano L (2013) Keeping mitochondria in shape: a matter of life and death. Eur J Clin Invest 43:886–893CrossRefPubMedGoogle Scholar
  58. 58.
    Scott I, Logan DC (2011) Mitochondrial dynamics. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 31–63CrossRefGoogle Scholar
  59. 59.
    Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:1225–1243CrossRefPubMedGoogle Scholar
  60. 60.
    Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Mitochondrial control of cellular life, stress, and death. Circ Res 111:1198–1207CrossRefPubMedGoogle Scholar
  61. 61.
    Fosslien E (2008) Cancer morphogenesis: role of mitochondrial failure. Ann Clin Lab Sci 38:307–330PubMedGoogle Scholar
  62. 62.
    Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266CrossRefGoogle Scholar
  63. 63.
    Sheahan MB, McCurdy DW, Rose RJ (2005) Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J 44:744–755CrossRefPubMedGoogle Scholar
  64. 64.
    Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Vanlerberghe GC, Wang J, Cvetkovska M, Dahal K (2014) Modes of electron transport chain function during stress: Does alternative oxidase respiration aid in balancing cellular energy metabolism during drought stress and recovery? In: Gupta KJ, Mur LAJ, Nellwarne B (eds) Alternative respiratory pathways in higher plants. Wiley, New York, https://sites.google.com/site/alternativerespiratorypathways/ Google Scholar
  66. 66.
    Colombatti F, Gonzalez DH, Welchen E (2014) Plant mitochondria under pathogen attack: a sigh of relief or a last breath? Mitochondrion. doi: 10.1016/j.mito.2014.03.006 PubMedGoogle Scholar
  67. 67.
    Umbach AL, Gonzàlez-Meler MA, Sweet CR, Siedow JN (2002) Activation of the plant mitochondrial alternative oxidase: insights from site-directed mutagenesis. Biochim Biophys Acta 1554:118–128CrossRefPubMedGoogle Scholar
  68. 68.
    Cardoso HG, Nogales A, Frederico AM, Svensson JT, Macedo E, Valada V, Arnholdt-Schmitt B (2014) Natural AOX gene diversity. Sub-chapter in Arnholdt-Schmitt, B. From AOX diversity to functional marker development. In: Gupta KJ, Mur LAJ, Nellwarne B (eds) Alternative respiratory pathways in higher plants. Wiley, New York, https://sites.google.com/site/alternativerespiratorypathways/ Google Scholar
  69. 69.
    Costa JH, McDonald AE, Arnholdt-Schmitt B, Fernandes de Melo D (2014) A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms. Mitochondrion. doi: 10.1016/j.mito.2014.04.007 PubMedGoogle Scholar
  70. 70.
    Grabelnych OI, Borovik OA, Tauson EL, Pobezhimova TP, Katyshev AI, Pavlovskaya NS, Koroleva NA, Lyubushkina IV, Bashmakov VY, Popov VN, Borovskii GB, Voinikov VK (2014) Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings. Biochemistry (Mosc) 79:506–519CrossRefGoogle Scholar
  71. 71.
    Barreto P, Okura VK, Neshich IA, de Maia I, Arruda P (2014) Overexpression of UCP1 in tobacco induces mitochondrial biogenesis and amplifies a broad stress response. BMC Plant Biol 14:144PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Belmonte M, Stasolla C, Loukanina N, Yeung EC, Thorpe TA (2003) Glutathione modulation of purine metabolism in cultured white spruce embryogenic tissue. Plant Sci 165:1377–1385CrossRefGoogle Scholar
  73. 73.
    Isah T, Mujib A (2012) Studies on antioxidant enzyme activity during in vitro morphogenesis of Caladium bicolor Linn. Int J Mod Cell Mol Biol 1:1–9Google Scholar
  74. 74.
    Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134CrossRefPubMedGoogle Scholar
  75. 75.
    Hansen LD, Church JN, Matheson S, McCarlie VW, Thygerson T, Criddle RS, Smith BN (2002) Kinetics of plant growth and metabolism. Thermochim Acta 388:415–425CrossRefGoogle Scholar
  76. 76.
    Smith CA, Melino VJ, Sweetman C, Soole KL (2009) Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol Plant 137:459–472CrossRefPubMedGoogle Scholar
  77. 77.
    Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN (2013) Alternative oxidase 1 Aox1 gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance. J Plant Physiol 170:111–114CrossRefPubMedGoogle Scholar
  78. 78.
    Rurek M (2014) Plant mitochondria under a variety of temperature stress conditions. Mitochondrion 19:289–294. doi: 10.1016/j.mito.2014.02.007 CrossRefPubMedGoogle Scholar
  79. 79.
    Searle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH (2011) Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytol 189:1027–1039Google Scholar
  80. 80.
    Li CR, Liang DD, Li J, Duan YB, Li H, Yang YC, Qui RY, Li L, Wei PC, Yang JB (2013) Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice alternative oxidase 1 genes. Plant Cell Environ 36:775–788CrossRefPubMedGoogle Scholar
  81. 81.
    Wang J, Vanlerberghe GC (2013) A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant 149:461–473CrossRefGoogle Scholar
  82. 82.
    Lima-Júnior A, Fernandes de Melo D, Hélio Costa J, Graciela Orellano E, Jolivet Y, Jarmuszkiewicz W, Sluse F, Dizengremel P, Silva Lima M (2000) Effect of pH on CN-resistant respiratory activity and regulation on Vigna uniguiculata mitochondria. Plant Physiol Bioch 38:765–771CrossRefGoogle Scholar
  83. 83.
    Sieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EW, Abdel-Mesih A, Moller IM, Vanlerberghe GC (2005) The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J Exp Bot 56:1499–1515CrossRefPubMedGoogle Scholar
  84. 84.
    Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher N, Fahnenstich H, Sonnewald U (2013) Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14:442PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Vanlerberghe GC, Cvetkovska M, Wang J (2009) Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol Plant 137:392–406CrossRefPubMedGoogle Scholar
  86. 86.
    Saisho D, Nakazono M, Lee KH, Tsutsumi N, Akita S, Hirai A (2001) The gene for alternative oxidase-2 (AOX2) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination. Genes Genet Syst 76:89–97CrossRefGoogle Scholar
  87. 87.
    Watanabe CK, Hachiya T, Takahara K, Kawai M, Uchimiya H, Uesono Y, Terashima I, Noguchi K (2010) Effects of AOX1a deficiency on plant growth, gene expression of respiratory components, and metabolic profile under low-nitrogen stress in Arabidopsis thaliana plants. Plant Cell Physiol 51:810–822, pcq033CrossRefPubMedGoogle Scholar
  88. 88.
    Considine MJ, Daley DO, Whelan J (2001) The expression of alternative oxidase and uncoupling protein during fruit ripening in mango. Plant Physiol 126:1619–1629PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Perotti VE, Moreno AS, Podestá FE (2014) Physiological aspects of fruit ripening: the mitochondrial connection. Mitochondrion 17:1–6CrossRefPubMedGoogle Scholar
  90. 90.
    Campos MD, Cardoso HG, Linke B, Costa JH, De Melo DF, Justo L, Frederico AM, Arnholdt-Schmitt B (2009) Differential expression and co-regulation of carrot AOX genes (Daucus carota). Physiol Plant 137:578–591Google Scholar
  91. 91.
    Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B (2009) Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiol Plant 137:532–552Google Scholar
  92. 92.
    Macedo ES, Sircar D, Cardoso HG, Peixe A, Arnholdt-Schmitt B (2012) Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism. Plant Cell Rep 31:1581–1590CrossRefGoogle Scholar
  93. 93.
    Macedo E, Vieira C, Carrizo D, Porfirio S, Hegewald H, Arnholdt-Schmitt B, Calado ML, Peixe A (2013) Adventitious root formation in olive (Olea europaea L.) microshoots: anatomical evaluation and associated biochemical changes in peroxidase and polyphenol oxidase activities. J Hortic Sci Biotech 88:53–59Google Scholar
  94. 94.
    Arnholdt-Schmitt B, Costa JH, De Melo DF (2006) AOX - a functional marker for efficient cell reprogramming under stress? Trends Plant Sci 11:281–287CrossRefPubMedGoogle Scholar
  95. 95.
    Nogales A, Noceda C, Ragonezi C, Cardoso H, Campos MD, Frederico AM, Sircar D, Kumar SR, Polidoros P, Peixe A, Arnholdt-Schmitt B (2014) Functional marker development from AOX genes requires deep phenotyping and individualized diagnosis. Sub-chapter in Arnholdt-Schmitt B. From AOX diversity to functional marker development. In: Gupta KJ, Mur LAJ, Nellwarne B (eds) Alternative respiratory pathways in higher plants. Wiley, New York, https://sites.google.com/site/alternativerespiratorypathways/ Google Scholar
  96. 96.
    Frederico AM, Zavattieri MA, Campos MD, Cardoso HG, McDonald AE, Arnholdt-Schmitt B (2009) The gymnosperm Pinus pinea contains both AOX gene subfamilies, AOX1 and AOX2. Physiol Plant 137:566–577Google Scholar
  97. 97.
    Ferreira AO, Cardoso HG, Macedo ES, Breviario D, Arnholdt-Schmitt B (2009) Intron polymorphism pattern in AOX1b of wild St John’s Wort (Hypericum perforatum L) allows discrimination between individual plants. Physiol Plant 137:520–531Google Scholar
  98. 98.
    Sircar D, Cardoso HG, Mukherjee C, Mitra A, Arnholdt-Schmitt B (2012) Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L. J Plant Physiol 169:657–663CrossRefPubMedGoogle Scholar
  99. 99.
    Afuape SO, Sayre R, Tawanda Z, Kahya SS (2013) Transgenic cassava lines carrying heterologous alternative oxidase (AtAOX1a) showed impaired quantitative and qualitative response to embryogenesis. Afr J Biotechnol 12:4303–4309CrossRefGoogle Scholar
  100. 100.
    Arnholdt-Schmitt B (1999) On the physiology of yield production in carrots – implications for breeding towards nutrient efficiency. Gartenbauwissenschaft 64:26–32Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Birgit Arnholdt-Schmitt
    • 1
  • Carla Ragonezi
    • 1
  • Hélia Cardoso
    • 1
  1. 1.EU Marie Curie ChairICAAM, IIFA, Universidade de ÉvoraÉvoraPortugal

Personalised recommendations