Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium)

  • Jaime A. Teixeira da Silva
  • Budi Winarto
Part of the Methods in Molecular Biology book series (MIMB, volume 1359)


The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon ‘Day Light’ and Dendrobium ‘Jayakarta’, D. ‘Gradita 31’, and D. ‘Zahra FR 62’) for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. ‘Zahra FR 62’.

Key words

Culture system Dendrobium Hybrid Cymbidium In vitro propagation Plant growth regulators Protocorm-like body Somatic embryo Thin cell layer Tissue culture 



The authors wish to thank Elsevier Ltd. for copyright permission to re-use photos in Fig. 1a, c, and f from [12]. The authors also thank Thammasat International Journal of Science and Technology for copyright permission to reuse the photo in Fig. 1b from [14].


  1. 1.
    Hossain MM, Kant R, Van PT, Winarto B, Zeng S-J, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139CrossRefGoogle Scholar
  2. 2.
    Teixeira da Silva JA (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floriculture Ornamental Biotech 7:1–52Google Scholar
  3. 3.
    Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame WA (2008) Techniques and applications of in vitro orchid seed germination. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st edn. Global Science Books, Ltd, Isleworth, pp 375–391Google Scholar
  4. 4.
    Chen JT, Chang WC (2006) Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol Plant 50:169–173CrossRefGoogle Scholar
  5. 5.
    Teixeira da Silva JA, Tanaka M (2006) Embryogenic callus, PLB and TCL paths to regeneration in hybrid Cymbidium (Orchidaceae). J Plant Growth Reg 25:203–210CrossRefGoogle Scholar
  6. 6.
    Teixeira da Silva JA, Tanaka M (2011) Thin cell layers: the technique. In: Davey M, Anthony P (eds) Plant cell culture: methods express. Wiley-Blackwell, Chichester, pp 25–37Google Scholar
  7. 7.
    Ng TB, Liu J-Y, Wong JH, Ye X-J, Sze SCW, Tong Y, Zhang KY (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803CrossRefPubMedGoogle Scholar
  8. 8.
    Teixeira da Silva JA (2010) Thin cell layers: power-tool for organogenesis of floricultural crops. In: Mohan Jain MS, Ochatt SJ (eds) Methods in molecular biology: protocols for in vitro propagation of ornamental plants, vol 589. Humana, Totowa, NJ, pp 377–391CrossRefGoogle Scholar
  9. 9.
    Teixeira da Silva JA (2013) The role of thin cell layers in regeneration and transformation in orchids. Plant Cell Tiss Org Cult 113:149–161CrossRefGoogle Scholar
  10. 10.
    Teixeira da Silva JA, Dobránszki J (2013) Plant thin cell layers: a 40-year celebration. J Plant Growth Reg 32:922–943CrossRefGoogle Scholar
  11. 11.
    Winarto B (2012) In vitro proliferation study of three Indonesian Dendrobium’s protocorm-like bodies (PLBs) on different fertilizer media. National orchid proceedings, Indonesian Center for Horticultural Research and Development, Medan, North Sumatra, Indonesia, 21 June 2011, pp, 154–168Google Scholar
  12. 12.
    Winarto B, Rachmawati F, Santi A, Teixeira da Silva JA (2013) Mass propagation of Dendrobium ‘Zahra FR 62’', a new hybrid used for cut flowers, using bioreactor culture. Sci Hortic 161:170–180CrossRefGoogle Scholar
  13. 13.
    Winarto B, Rachmawati F, Wiendi NA (2013) Development of somatic embryogenesis technology bioreactor base in Dendrobium for mass propagation of qualified-seedling KKP3N research report. Indonesian Agency for Agriculture Research and Development, Jakarta, p 67Google Scholar
  14. 14.
    Winarto B, Rachmawati F (2013) In vitro propagation protocol of Dendrobium ‘Gradita 31’ via protocorm like bodies. Thammasat Int J Sci Technol 18(2):54–68Google Scholar
  15. 15.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  16. 16.
    Vacin EF, Went EW (1949) Some pH changes in nutrient solution. Bot Gaz 110:605–613CrossRefGoogle Scholar
  17. 17.
    Teixeira da Silva JA (2012) New basal media for protocorm-like body and callus induction of hybrid Cymbidium. J Fruit Ornam Plant Res 20:127–133Google Scholar
  18. 18.
    Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L. Planta 72:371–384CrossRefPubMedGoogle Scholar
  19. 19.
    Teixeira da Silva JA, Dobránszki J (2013) How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Sci Hortic 159:59–66CrossRefGoogle Scholar
  20. 20.
    Teixeira da Silva JA (2013) Impact of paper bridges, activated charcoal, and antioxidants on growth and development of protocorm-like bodies of hybrid Cymbidium. In Vitro Cell Dev Biol Plant 49:414–420CrossRefGoogle Scholar
  21. 21.
    Thomas DT (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631CrossRefPubMedGoogle Scholar
  22. 22.
    Hossain MM, Sharma M, Teixeira da Silva JA, Pathak P (2010) Seed germination and tissue culture of Cymbidium giganteum Wall. ex Lindl. Sci Hortic 123:479–487CrossRefGoogle Scholar
  23. 23.
    Teixeira da Silva JA (2013) The effect of ethylene inhibitors (AgNO3, AVG), an ethylene-liberating compound (CEPA) and aeration on the formation of protocorm-like bodies of hybrid Cymbidium (Orchidaceae). Front Biol 8:606–610CrossRefGoogle Scholar
  24. 24.
    Teixeira da Silva JA (2013) Smoke-saturated water from five grasses growing in Japan inhibits in vitro protocorm-like body formation in hybrid Cymbidium. J Plant Dev 20:63–70Google Scholar
  25. 25.
    Teixeira da Silva JA, Uthairatanakij A, Obsuwan K, Shimasaki K, Tanaka M (2013) Elicitors (chitosan and hyaluronic acid) affect protocorm-like body formation in hybrid Cymbidium. Floriculture Ornamental Biotech 7:77–81Google Scholar
  26. 26.
    Teixeira da Silva JA (2012) Jasmonic acid, but not salicylic acid, improves PLB formation of hybrid Cymbidium. Plant Tissue Cult Biotechnol 22:187–192Google Scholar
  27. 27.
    Teixeira da Silva JA (2012) Impact of methyl jasmonate on PLB formation of hybrid Cymbidium (Orchidaceae). J Plant Dev 19:47–52Google Scholar
  28. 28.
    Van PT, Teixeira da Silva JA, Ham LH, Tanaka M (2012) Effects of permanent magnetic fields on growth of Cymbidium and Spathiphyllum. In Vitro Cell Dev Biol Plant 48:225–232CrossRefGoogle Scholar
  29. 29.
    Teixeira da Silva JA, Tanaka M (2009) Impact of gelling agent and alternative medium additives on hybrid Cymbidium protocorm-like body and callus formation. Floriculture Ornamental Biotech 3:56–58Google Scholar
  30. 30.
    Van PT, Tanaka M, Teixeira da Silva JA (2010) Gelling agent affects hybrid Cymbidium plantlet growth. Floriculture Ornamental Biotech 4(1):45–47Google Scholar
  31. 31.
    Teixeira da Silva JA, Tanaka M (2009) Culture vessel affects hybrid Cymbidium protocorm-like body and callus formation. Floriculture Ornamental Biotech 3:53–55Google Scholar
  32. 32.
    Teixeira da Silva JA, Tanaka M (2009) Optimization of particle bombardment conditions for hybrid Cymbidium. Transgenic Plant J 3(1):119–122Google Scholar
  33. 33.
    Teixeira da Silva JA, Tanaka M (2011) Optimization of particle bombardment conditions for hybrid Cymbidium: part II. Transgenic Plant J 5:78–82Google Scholar
  34. 34.
    Nhut DT, Tien TNT, Huong MTN, Hien NTH, Huyen PX, Luan VQ, Le BV, Teixeira da Silva JA (2005) Artificial seeds for preservation and propagation of Cymbidium spp. Propag Ornam Plants 5:67–73Google Scholar
  35. 35.
    Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology – a complete synthesis. Biotechnol Adv 31:186–207CrossRefPubMedGoogle Scholar
  36. 36.
    Teixeira da Silva JA (2012) Production of synseed for hybrid Cymbidium using protocorm-like bodies. J Fruit Ornam Plant Res 20:135–146Google Scholar
  37. 37.
    Teixeira da Silva JA (2013) Cryopreservation of hybrid Cymbidium protocorm-like bodies by encapsulation-dehydration and vitrification: impact on explant survival and success of synseed germination. In Vitro Cell Dev Biol Plant 49:690–698CrossRefGoogle Scholar
  38. 38.
    Begum AA, Tamaki M, Kako S (1994) Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J Jpn Soc Hortic Sci 63:663–673CrossRefGoogle Scholar
  39. 39.
    Malabadi RB, Teixeira da Silva JA, Nataraja K, Mulgund GS (2008) Shoot tip transverse thin cell layers and 24-epibrassinolide in the micropropagation of Cymbidium bicolor Lindl. Floriculture Ornamental Biotech 2:44–48Google Scholar
  40. 40.
    Teixeira da Silva JA, Chan M-T, Sanjaya, Chai M-L, Tanaka M (2006) Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Sci Hortic 109:368–378CrossRefGoogle Scholar
  41. 41.
    Teixeira da Silva JA, Singh N, Tanaka M (2006) Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae), and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tiss Org Cult 84:135–144CrossRefGoogle Scholar
  42. 42.
    Teixeira da Silva JA, Yam T, Fukai S, Nayak N, Tanaka M (2005) Establishment of optimum nutrient media for in vitro propagation of Cymbidium Sw. (Orchidaceae) using protocorm-like body segments. Propag Ornamental Plants 5:129–136Google Scholar
  43. 43.
    Van PT, Teixeira da Silva JA, Tanaka M (2012) How does choice of substrate and culture conditions affect the growth and development of Cymbidium cv. Green Planet ‘Energy Star’ protocorm-like bodies? Eur J Hortic Sci 77:219–225Google Scholar
  44. 44.
    Teixeira da Silva JA (2013) Ammonium to nitrate ratio affects PLB formation in vitro of hybrid Cymbidium. J Ornam Hortic Plants 3:155–160Google Scholar
  45. 45.
    Teixeira da Silva JA, Giang DTT, Chan M-T, Sanjaya, Norikane A, Chai M-L, Chico-Ruíz J, Penna S, Granström T, Tanaka M (2007) The influence of different carbon sources, photohetero-, photoauto- and photomixotrophic conditions on protocorm-like body organogenesis and callus formation in thin cell layer culture of hybrid Cymbidium (Orchidaceae). Orchid Sci Biotechnol 1:15–23Google Scholar
  46. 46.
    Teixeira da Silva JA, Dobránszki J (2011) The plant growth correction factor. I. The hypothetical and philosophical basis. Int J Plant Dev Biol 5:73–74Google Scholar
  47. 47.
    Teixeira da Silva JA, Dobránszki J (2014) Dissecting the concept of the thin cell layer: theoretical basis and practical application of the plant growth correction factor to apple, Cymbidium and chrysanthemum. J Plant Growth Reg 33:881–895CrossRefGoogle Scholar
  48. 48.
    Kaewubon P, Hutadilok-Towatana N, Teixeira da Silva JA, Meesawat U (2015) Ultrastructural and biochemical alterations during browning of Pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Org Cult 121:53–69Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Kagawa-kenJapan
  2. 2.Indonesian Ornamental Crops Research Institute (IOCRI)Pacet-Cianjur, West JavaIndonesia

Personalised recommendations