Advertisement

A Comparison of In Vitro and In Vivo Asexual Embryogenesis

  • Melanie L. Hand
  • Sacco de Vries
  • Anna M. G. Koltunow
Part of the Methods in Molecular Biology book series (MIMB, volume 1359)

Abstract

In plants, embryogenesis generally occurs through the sexual process of double fertilization, which involves a haploid sperm cell fusing with a haploid egg cell to ultimately give rise to a diploid embryo. Embryogenesis can also occur asexually in the absence of fertilization, both in vitro and in vivo. Somatic or gametic cells are able to differentiate into embryos in vitro following the application of plant growth regulators or stress treatments. Asexual embryogenesis also occurs naturally in some plant species in vivo, from either ovule cells as part of a process defined as apomixis, or from somatic leaf tissue in other species. In both in vitro and in vivo asexual embryogenesis, the embryo precursor cells must attain an embryogenic fate without the act of fertilization. This review compares the processes of in vitro and in vivo asexual embryogenesis including what is known regarding the genetic and epigenetic regulation of each process, and considers how the precursor cells are able to change fate and adopt an embryogenic pathway.

Key words

Adventitious embryony Apomixis Cell fate Gametic embryogenesis Kalanchoë Parthenogenesis Somatic embryogenesis 

References

  1. 1.
    Drews G, Koltunow AM (2011) The female gametophyte. Arabidopsis Book 9:e0155Google Scholar
  2. 2.
    Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160PubMedCrossRefGoogle Scholar
  3. 3.
    Capron A, Chatfield S, Provart N, Berleth T (2009) Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7:e0126Google Scholar
  4. 4.
    Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization: caught in the act. Trends Plant Sci 13:437–443PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor TN, Taylor EL, Krings M (2008) Paleobotany. The biology and evolution of fossil plants, 2nd edn. Academic Press, New YorkGoogle Scholar
  6. 6.
    Radoeva T, Weijers D (2014) A roadmap to embryo identity in plants. Trends Plant Sci 19(11):709–716PubMedCrossRefGoogle Scholar
  7. 7.
    Hand ML, Koltunow A (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94CrossRefGoogle Scholar
  10. 10.
    Koltunow AM, Ozias-Akins P, Siddiqi I (2013) Apomixis. In: Becraft PW (ed) Seed genomics. Wiley, New York, pp 83–110CrossRefGoogle Scholar
  11. 11.
    Vijverberg K, Milanovic-Ivanovic S, Bakx-Schotman T, van Dijk PJ (2010) Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene. BMC Plant Biol 10Google Scholar
  12. 12.
    Ortiz JPA, Quarin CL, Pessino SC, Acuña C, Martínez EJ, Espinoza F et al (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot 112:767–787PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Koltunow AMG, Johnson SD, Rodrigues JCM, Okada T, Hu Y, Tsuchiya T et al (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66:890–902PubMedCrossRefGoogle Scholar
  14. 14.
    Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW et al (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wakana A, Uemoto S (1988) Adventive embryogenesis in Citrus (Rutaceae). II. Postfertilization development. Am J Bot 75:1033–1047CrossRefGoogle Scholar
  16. 16.
    Wakana A, Uemoto S (1987) Adventive embryogenesis in Citrus. I. The occurrence of adventive embryos without pollination or fertilization. Am J Bot 74:517–530CrossRefGoogle Scholar
  17. 17.
    Koltunow AM, Soltys K, Nito N, McClure S (1995) Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv. Valencia. Can J Bot 73:1567–1582CrossRefGoogle Scholar
  18. 18.
    Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Koltunow AM, Hidaka T, Robinson SP (1996) Polyembryony in Citrus: accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol 110:599–609PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Matzk F (1996) The Salmon system of wheat: a suitable model for apomixis research. Hereditas 125:299–301CrossRefGoogle Scholar
  21. 21.
    Tsunewaki K, Mukai Y (1990) Wheat haploids through the Salmon method. In: Bajaj YPS (ed) Wheat, biotechnology in agriculture and forestry 13. Springer, Berlin/Heidelberg/New York, pp 460–478Google Scholar
  22. 22.
    Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462Google Scholar
  23. 23.
    Garcês HMP, Champagne CEM, Townsley BT, Park S, Malhó R, Pedroso MC et al (2007) Evolution of asexual reproduction in leaves of the genus Kalanchoë. Proc Natl Acad Sci U S A 104:15578–15583PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Batygina TB, Bragina EA, Titova GE (1996) Morphogenesis of propagules in viviparous species Bryophyllum daigremontianum and B. calycinum. Acta Soc Bot Pol 65:127–133CrossRefGoogle Scholar
  25. 25.
    Yarbrough JA (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Am J Bot 19:443–453CrossRefGoogle Scholar
  26. 26.
    Sibi ML, Kobaissi A, Shekafandeh A (2001) Green haploid plants from unpollinated ovary culture in tetraploid wheat (Triticum durum Defs.). Euphytica 122:351–359CrossRefGoogle Scholar
  27. 27.
    Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21:105–111CrossRefGoogle Scholar
  28. 28.
    Islam SMS, Tuteja N (2012) Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci 182:134–144PubMedCrossRefGoogle Scholar
  29. 29.
    Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375PubMedCrossRefGoogle Scholar
  30. 30.
    Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857PubMedCrossRefGoogle Scholar
  31. 31.
    Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology 13(1)Google Scholar
  32. 32.
    Mordhorst AP, Hartog MV, El Tamer MK, Laux T, de Vries SC (2002) Somatic embryogenesis from Arabidopsis shoot apical meristem mutants. Planta 214:829–836PubMedCrossRefGoogle Scholar
  33. 33.
    Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, Vankammen A, Devries SC (1994) Description of somatic-smbryo-forming single cells in carrot suspension-cultures employing video cell tracking. Planta 194:565–572CrossRefGoogle Scholar
  34. 34.
    Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M et al (2012) Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22:211–222PubMedCrossRefGoogle Scholar
  35. 35.
    Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223CrossRefGoogle Scholar
  36. 36.
    Feher A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12Google Scholar
  37. 37.
    Sagare AP, Lee YL, Lin TC, Chen CC, Tsay HS (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)—a medicinal plant. Plant Sci 160:139–147PubMedCrossRefGoogle Scholar
  38. 38.
    Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759PubMedCrossRefGoogle Scholar
  39. 39.
    Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270PubMedCrossRefGoogle Scholar
  40. 40.
    Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, Ditengou FA et al (2013) Maternal control of PIN1 is required for female gametophyte development in Arabidopsis. PLoS One 8:e66148PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Carman JG (1990) Embryogenic cells in plant-tissue cultures: occurrence and behavior. In Vitro Cell Dev Biol 26:746–753CrossRefGoogle Scholar
  42. 42.
    Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114PubMedCrossRefGoogle Scholar
  43. 43.
    Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344CrossRefGoogle Scholar
  44. 44.
    Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK et al (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639PubMedGoogle Scholar
  45. 45.
    Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43:740–745PubMedGoogle Scholar
  46. 46.
    Santarem ER, Pelissier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol—Plant 33:13–19CrossRefGoogle Scholar
  47. 47.
    Jin F, Hu L, Yuan D, Xu J, Gao W, He L et al (2014) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol J 12:161–173PubMedCrossRefGoogle Scholar
  48. 48.
    Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507PubMedCrossRefGoogle Scholar
  49. 49.
    Tucker MR, Okada T, Johnson SD, Takaiwa F, Koltunow AMG (2012) Sporophytic ovule tissues modulate the initiation and progression of apomixis in Hieracium. J Exp Bot 63:3229–3241PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genet Genomes 1–16Google Scholar
  51. 51.
    Wilms HJ, van Went JL, Cresti M, Ciampolini F (1983) Adventive embryogenesis in citrus. Caryologia 36:65–78CrossRefGoogle Scholar
  52. 52.
    Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org Cult 90:1–8CrossRefGoogle Scholar
  53. 53.
    Zhang B, Wang ZJ, Jin SH, Xia GH, Huang YJ, Huang JQ (2012) A pattern of unique embryogenesis occurring via apomixis in Carya cathayensis. Biologia Plantarum 56:620–627CrossRefGoogle Scholar
  54. 54.
    Mordhorst AP, Toonen MAJ, De Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576CrossRefGoogle Scholar
  55. 55.
    Scheres B, Wolkenfelt H, Viola W, Terlouw M, Lawson E, Dean C et al (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487Google Scholar
  56. 56.
    Chandler J, Nardmann J, Werr W (2008) Plant development revolves around axes. Trends Plant Sci 13:78–84PubMedCrossRefGoogle Scholar
  57. 57.
    Wendrich JR, Weijers D (2013) The arabidopsis embryo as a miniature morphogenesis model. New Phytol 199:14–25PubMedCrossRefGoogle Scholar
  58. 58.
    Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266CrossRefGoogle Scholar
  59. 59.
    Prem D, Solis MT, Barany I, Rodriguez-Sanz H, Risueno MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12Google Scholar
  60. 60.
    Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249CrossRefGoogle Scholar
  61. 61.
    Filonova LH, Bozhkov PV, Von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264PubMedCrossRefGoogle Scholar
  62. 62.
    Supena EDJ, Winarto B, Riksen T, Dubas E, Van Lammeren A, Offringa R et al (2008) Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. J Exp Bot 59:803–814PubMedCrossRefGoogle Scholar
  63. 63.
    Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C et al (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 144:155–172PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sex Plant Reprod 11:213–230CrossRefGoogle Scholar
  66. 66.
    Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509Google Scholar
  67. 67.
    Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574PubMedCrossRefGoogle Scholar
  68. 68.
    Ogawa D, Johnson SD, Henderson ST, Koltunow AM (2013) Genetic separation of autonomous endosperm formation (AutE) from two other components of apomixis in Hieracium. Plant Reprod 26:113–123PubMedCrossRefGoogle Scholar
  69. 69.
    Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  70. 70.
    Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U et al (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117PubMedCrossRefGoogle Scholar
  72. 72.
    Albertini E, Marconi G, Reale L, Barcaccia G, Porceddu A, Ferranti F et al (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2199PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Podio M, Felitti SA, Siena LA, Delgado L, Mancini M, Seijo JG et al (2014) Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum. Plant Mol Biol 84:479–495PubMedCrossRefGoogle Scholar
  74. 74.
    Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL, Rossell JB et al (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, Collin M et al (2007) EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353–1362PubMedCrossRefGoogle Scholar
  77. 77.
    Ouakfaoui SE, Schnell J, Abdeen A, Colville A, Labbé H, Han S et al (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C et al (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci U S A 95:5127–5132PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Lotan T, Ohto MA, Matsudaira Yee K, West MAL, Lo R, Kwong RW et al (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1196–1205CrossRefGoogle Scholar
  81. 81.
    Luerssen K, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764PubMedCrossRefGoogle Scholar
  82. 82.
    Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL et al (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98:11806–11811PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J et al (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc Natl Acad Sci 105:3151–3156PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385PubMedCrossRefGoogle Scholar
  85. 85.
    Garcês HMP, Koenig D, Townsley BT, Kim M, Sinha NR (2014) Truncation of LEAFY COTYLEDON1 protein is required for asexual reproduction in Kalanchoë daigremontiana. Plant Physiol 165:196–206PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Kőszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J et al (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:280–291PubMedCrossRefGoogle Scholar
  87. 87.
    Lawit S, Chamberlin M, Agee A, Caswell E, Albertsen M (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type specific fluorescent markers: cell labelling, cell ablation and adventitious embryos. Plant Reprod 26:125–137PubMedCrossRefGoogle Scholar
  88. 88.
    Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133:653–663PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar
  90. 90.
    Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  91. 91.
    Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7:1271–1282PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Curtis MD, Grossniklaus U (2008) Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod 21:79–88CrossRefGoogle Scholar
  93. 93.
    Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci U S A 103:18650–18655PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M et al (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142PubMedCrossRefGoogle Scholar
  95. 95.
    Leljak-Levanić D, Bauer N, Mihaljević S, Jelaska S (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127PubMedCrossRefGoogle Scholar
  96. 96.
    Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K et al (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54PubMedCrossRefGoogle Scholar
  97. 97.
    Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci U S A 96:13839–13844PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Dean Rider Jr SD, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43CrossRefGoogle Scholar
  99. 99.
    Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC et al (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94:4223–4228PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ et al (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–415PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Schmidt A, Wöhrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V et al (2013) The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. Plant J 73:776–787PubMedCrossRefGoogle Scholar
  103. 103.
    Guitton AE, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR of IRA 1 produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol 15:750–754PubMedCrossRefGoogle Scholar
  104. 104.
    Rodrigues JCM, Tucker MR, Johnson SD, Hrmova M, Koltunow AMG (2008) Sexual and apomictic seed formation in Hieracium requires the plant polycomb-group gene FERTILIZATION INDEPENDENT ENDOSPERM. Plant Cell 20:2372–2386PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Makarevich G, Leroy O, Akinci U, Schubert D, Clarenz O, Goodrich J et al (2006) Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7:947–952PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L (2011) Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell 23:4065–4078PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Cigliano RA, Cremona G, Paparo R, Termolino P, Perrella G, Gutzat R et al (2013) Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiol 163:431–440PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Melanie L. Hand
    • 1
  • Sacco de Vries
    • 2
  • Anna M. G. Koltunow
    • 1
  1. 1.Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture, Waite CampusUrrbraeSouth Australia
  2. 2.Department of BiochemistryUniversity of WageningenWageningenThe Netherlands

Personalised recommendations