Abstract
Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4/γ-Fe2O3) superparamagnetic core and a coating shell which presents affinity for a specific target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually first functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specific area, and then with an outer layer of a phosphate-affinity material. Fe3O4-coating materials include metal oxides, rare earth metal-based compounds, immobilized-metal ions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks.
Key words
- Magnetic nanocomposite s
- Phosphopeptide enrich ment
- Affinity
- Hybrid material s
This is a preview of subscription content, access via your institution.
Buying options




References
López E, Cho W (2012) Phosphoproteomics and lung cancer research. Int J Mol Sci 13:12287–12314
Rigbolt KT, Blagoev B (2012) Quantitative phosphoproteomics to characterize signaling networks. Semin Cell Dev Biol 23:863–871
Mann M, Ong S-E, Grønborg M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268
Engholm-Keller K, Larsen MR (2013) Technologies and challenges in large-scale phosphoproteomics. Proteomics 13:910–931
Harsha H, Pandey A (2010) Phosphoproteomics in cancer. Mol Oncol 4:482–495
Iqbal K, Liu F, Gong C-X et al (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656
Braithwaite SP, Stock JB, Mouradian MM (2012) α-Synuclein phosphorylation as a therapeutic target in Parkinson’s disease. Rev Neurosci 23:191–198
Kotlo K, Johnson KR, Grillon JM et al (2012) Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 77:1–13
Jaros JA, Martins-de-Souza D, Rahmoune H et al (2012) Protein phosphorylation patterns in serum from schizophrenia patients and healthy controls. J Proteomics 76:43–55
Nita-Lazar A, Saito-Benz H, White FM (2008) Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8:4433–4443
Eyrich B, Sickmann A, Zahedi RP (2011) Catch me if you can: mass spectrometry‐based phosphoproteomics and quantification strategies. Proteomics 11:554–570
Palumbo AM, Smith SA, Kalcic CL et al (2011) Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrom Rev 30:600–625
Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol 49:199–221
Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024
Batalha IL, Lowe CR, Roque AC (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30:100–110
Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3:1630–1638
Zarei M, Sprenger A, Metzger F et al (2011) Comparison of ERLIC–TiO2, HILIC–TiO2, and SCX–TiO2 for global phosphoproteomics approaches. J Proteome Res 10:3474–3483
Nühse TS, Stensballe A, Jensen ON et al (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243
Motoyama A, Xu T, Ruse CI et al (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634
Pina AS, Batalha ÍL, Roque ACA (2014) Affinity tags in protein purification and peptide enrichment: an overview. In: Labrou NE (ed) Protein downstream processing, vol 1129, Methods in molecular biology. Humana Press, Totowa, NJ, pp 147–168. doi:10.1007/978-1-62703-977-2_14
Cai D, Lee A, Chiang C-M et al (2011) Peptoid ligands that bind selectively to phosphoproteins. Bioorg Med Chem Lett 21:4960–4964
Fíla J, Honys D (2012) Enrichment techniques employed in phosphoproteomics. Amino Acids 43:1025–1047
Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305
Pinkse MW, Uitto PM, Hilhorst MJ et al (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943
Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886
Ye J, Zhang X, Young C et al (2010) Optimized IMAC–IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res 9:3561–3573
Najam-ul-Haq M, Jabeen F, Hussain D et al (2012) Versatile nanocomposites in phosphoproteomics: a review. Anal Chim Acta 747:7–18
Zhu Y, Stubbs LP, Ho F et al (2010) Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2:365–374
Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nano Res Lett 3:397–415
Lee A, Yang HJ, Lim ES et al (2008) Enrichment of phosphopeptides using bare magnetic particles. Rapid Commun Mass Spectrum 22:2561–2564
Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244
Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304
Chen C-T, Chen Y-C (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919
Li Y, Xu X, Qi D et al (2008) Novel Fe3O4@TiO2 core–shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res 7:2526–2538
Li Y, Wu J, Qi D et al. (2008) Novel approach for the synthesis of Fe3O4@TiO2 core–shell microspheres and their application to the highly specific capture of phosphopeptides for MALDI-TOF MS analysis. Chem Commun 564–566
Lu Z, Duan J, He L et al (2010) Mesoporous TiO2 nanocrystal clusters for selective enrichment of phosphopeptides. Anal Chem 82:7249–7258
Lo C-Y, Chen W-Y, Chen C-T et al (2007) Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. J Proteome Res 6:887–893
Li W, Deng Q, Fang G et al (2013) Facile synthesis of Fe3O4@TiO2–ZrO2 and its application in phosphopeptide enrichment. J Mater Chem B 1:1947–1961
Kweon HK, Håkansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749
Ma W, Zhang C, Zhang Y et al (2014) Magnetic MSP@ZrO2 microspheres with yolk-shell structure: designed synthesis and application in highly selective enrichment of phosphopeptides. Langmuir 30:6602
Guo J, Yang W, Wang C (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25:5196–5214
Chen W-Y, Chen Y-C (2010) Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 398:2049–2057
Chen C-T, Chen W-Y, Tsai P-J et al (2007) Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis. J Proteome Res 6:316–325
Chen C-T, Chen Y-C (2010) Functional magnetic nanoparticle-based label free fluorescence detection of phosphorylated species. Chem Commun 46:5674–5676
Ficarro SB, Parikh JR, Blank NC et al (2008) Niobium (V) oxide (Nb2O5): application to phosphoproteomics. Anal Chem 80:4606–4613
Lin H-Y, Chen W-Y, Chen Y-C (2009) Iron oxide/niobium oxide core–shell magnetic nanoparticle-based phosphopeptide enrichment from biological samples for MALDI MS analysis. J Biomed Nanotechnol 5:215–223
Qi D, Lu J, Deng C et al (2009) Development of core-shell structure Fe3O4@ Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J Chromatogr A 1216:5533–5539
Li Y, Lin H, Deng C et al (2008) Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 8:238–249
Qi D, Lu J, Deng C et al (2009) Magnetically responsive Fe3O4@C@SnO2 core–shell microspheres: synthesis, characterization and application in phosphoproteomics. J Phys Chem C 113:15854–15861
Wang Z-G, Cheng G, Liu Y-L et al (2013) Magnetic γ-Fe2O3@REVO4 (RE = Sm, Dy, Ho) affinity microspheres for selective capture, fast separation and easy identification of phosphopeptides. J Mater Chem B 1:1491–1500
Cheng G, Zhang J-L, Liu Y-L et al (2011) Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun 47:5732–5734
Cheng G, Liu Y-L, Zhang J-L et al (2012) Lanthanum silicate coated magnetic microspheres as a promising affinity material for phosphopeptide enrichment and identification. Anal Bioanal Chem 404:763–770
Wang Z-G, Cheng G, Liu Y-L et al (2013) Novel 3D flowerlike hierarchical γ-Fe2O3@xNH4F · yLuF3 core–shell microspheres tailor-made by a phase transformation process for the capture of phosphopeptides. J Mater Chem B 1:4845–4854
Cheng G, Liu Y-L, Wang Z-G et al (2013) Yolk–shell magnetic microspheres with mesoporous yttrium phosphate shells for selective capture and identification of phosphopeptides. J Mater Chem B 1:3661–3669
Sun Y, Wang H-F (2013) Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides. J Chromatogr A 1316:62–68
Block H, Maertens B, Spriestersbach A et al (2009) Immobilized-metal affinity chromatography (IMAC): a review. Method Enzymol 463:439–473
Mirza MR, Rainer M, Messner CB et al (2013) A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment. Analyst 138:2995–3004
Li Y, Qi D, Deng C et al (2008) Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 7:1767–1777
Xu X, Deng C, Gao M et al (2006) Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater 18:3289–3293
Tan F, Zhang Y, Mi W et al (2008) Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. J Proteome Res 7:1078–1087
Novotna L, Emmerova T, Horak D et al (2010) Iminodiacetic acid-modified magnetic poly (2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. J Chromatogr A 1217:8032–8040
Li Y-C, Lin Y-S, Tsai P-J et al (2007) Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal Chem 79:7519–7525
Ficarro SB, Adelmant G, Tomar MN et al (2009) Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem 81:4566–4575
Xiong Z, Zhang L, Fang C et al (2014) Ti4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. J Mater Chem B 2:4473
Zhang L, Zhao Q, Liang Z et al (2012) Synthesis of adenosine functionalized metal immobilized magnetic nanoparticles for highly selective and sensitive enrichment of phosphopeptides. Chem Commun 48:6274–6276
Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265
Dias AMGC, Hussain A, Marcos AS et al (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155
Chen C-T, Wang L-Y, Ho Y-P (2011) Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem 399:2795–2806
Iliuk AB, Martin VA, Alicie BM et al (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9:2162–2172
Tsunehiro M, Meki Y, Matsuoka K et al (2013) A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B 925:86–94
Fang G, Gao W, Deng Q et al (2012) Highly selective capture of phosphopeptides using a nano titanium dioxide–multiwalled carbon nanotube nanocomposite. Anal Biochem 423:210–217
Yan Y, Zheng Z, Deng C et al (2014) Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Talanta 118:14–20
Hsiao H-H, Hsieh H-Y, Chou C-C et al (2007) Concerted experimental approach for sequential mapping of peptides and phosphopeptides using C18-functionalized magnetic nanoparticles. J Proteome Res 6:1313–1324
Lin H-Y, Chen W-Y, Chen Y-C (2009) Iron oxide/tantalum oxide core–shell magnetic nanoparticle-based microwave-assisted extraction for phosphopeptide enrichment from complex samples for MALDI MS analysis. Anal Bioanal Chem 394:2129–2136
Acknowledgments
The authors thank the financial support from Fundação para a Ciência e a Tecnologia, Ministério da Educação e da Ciência, Portugal, through projects no. Pest-OE/EQB/LA0004/2011, PEst-C/EQB/LA0006/2013, PTDC/EBB-BIO/102163/2008, PTDC/EBBBIO/118317/2010 and SFRH/BD/64427/2009 for I.L.B.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this protocol
Cite this protocol
Batalha, Í.L., Roque, A.C.A. (2016). Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_13
Download citation
DOI: https://doi.org/10.1007/978-1-4939-3049-4_13
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-3048-7
Online ISBN: 978-1-4939-3049-4
eBook Packages: Springer Protocols